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Abstract 

The presence of toxic chemical contaminants in some marine organisms, including those consumed by humans, is 
well known. Monitoring the levels of such contaminants and their geographic and temporal variability is important 
for assessing and maintaining the safety of seafood and the health of the marine environment. Chemical analyses are 
sensitive and specific, but can be expensive and provide little information on the actual or potential biological activity 
of the contaminants. Biologically-based assays can be used to indicate the presence and potential effects of 
contaminants in marine animals, and therefore, have potential for routine monitoring of the marine environment. 
Halogenated aromatic hydrocarbons (HAHs) such as chlorinated dioxins, dibenzofurans, and biphenyls comprise a 
major group of marine contaminants. The most toxic HAHs (dioxin-like compounds) act through an intracellular 
receptor protein, the aryl hydrocarbon receptor, which is present in humans and many, but not all, marine animals. A 
toxic equivalency approach based on an understanding of this mechanism provides an integrated measure of the 
biological potency or activity of HAH mixtures. Biomarkers measured in marine animals indicate their exposure to 
these chemicals in vivo. Similarly, in vitro biomarker responses measured in cell culture bioassays can be used to 
assess the concentration of 'dioxin equivalents' in extracts of environmental matrices. Here, I have reviewed the types 
and relative sensitivities of mechanistically-based, in vitro bioassays for dioxin-like compounds, including assays of 
receptor-binding, DNA-binding and transcriptional activation of native (CYPlA) or reporter (luciferase) genes. 

Abbreviations: AHH, aryl hydrocarbon hydroxylase; AHR, Ah (aryl hydrocarbon) receptor; CYP1A1, Cytochrome P450 1A1; 
ORE, dioxin response element; ECSO, estimated concentration needed to produce 50% of the maximal response; ELISA, 
enzyme-linked immunosorbent assay; EROD, ethoxyresorufin 0-deethylase; HACCP, Hazard Analysis and Critical Control Point; 
HAH, halogenated aromatic hydrocarbons; PAH, polynuclear aromatic hydrocarbon; P450, cytochrome P450; PCB, polychlorinated 
biphenyl; PCDDs, polychlorinated dibenzo-p-dioxins; PCDFs, polychlorinated dibenzofurans; SPMDs, semipermeable membrane 
devices; TCB, tetrachlorobiphenyl; TCDD4 2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDF, 2,3,7,8-tetrachlorodibenzofuran; TEF, toxic 
equivalency factor; TEO, dioxin (TCDD) equivalents 
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Examples of their use in environmental monitoring are provided. Cell culture bioassays are rapid and inexpensive, 
and thus have great potential for routine monitoring of marine resources, including seafood. Several such assays 
exist, or are being developed, for a variety of marine contaminants in addition to the dioxin-like chemicals. A battery 
of cell culture bioassays might be used to rapidly and sensitively screen seafood for the presence of contaminants of 
concern, including dioxin-like compounds as well as other contaminants such as natural toxins, hormonally active 
agents, and heavy metals. Such a battery of mechanism-based, in vitro bioassays could be incorporated into 
monitoring efforts under recently adopted hazard analysis and critical control point (HACCP) programs. © 2002 
Elsevier Science B.V. All rights reserved. 

Keywords: Seafood; Cell culture bioassays; Biomarkers; Dioxins; Polychlorinated biphenyls; Cytochrome P450; CYPlAl; Hepatoma 
cells; Reporter genes 

1. Introduction 

It is well known that a wide variety of toxic 
chemicals are present in the world's oceans (Clark, 
1986; Giam and Ray, 1987). Included among these 
are natural products as well as compounds of 
anthropogenic origin: marine toxins, inorganic and 
organic metals, petroleum and combustion­
derived hydrocarbons, chlorinated pesticides, 
halogenated aromatic hydrocarbons, and many 
others. These contaminants can be found bound 
to sediments, dissolved in water (including pore 
water), in the sea-surface microlayer, and within 
various marine organisms, including marine ani­
mals used as food by humans and by other marine 
species. The highest concentrations of these 
chemicals are often found in urban harbors and 
other coastal areas (Farrington et al., 1983; 
Weaver, 1984; Dethlefson, 1988). However, there 
is also a more generalized, global contamination; 
persistent organic and inorganic pollutants have 
been documented even in remote locations such 
as the open ocean, polar regions, and in the deep 
sea (Stegeman et al., 1986; Muir et al., 1988; 
Mason and Fitzgerald, 1990; Ballschmiter et al., 
1997; Stegeman et al., 2001). 

Experimental or epidemiological studies have 
shown that marine pollutants are capable of pro­
ducing a variety of toxic effects in exposed organ­
isms; some of the most common include neuro­
toxicity, immune dysfuncticn, reproductive and 
developmental effects, and cancer. Some of the 
compounds, such as the algal toxins sometimes 
found in shellfish, are primarily acutely toxic, 
while others, such as dioxins anri. polychlorinated ~ 

biphenyls (PCBs), are of concern primarily be­
cause of their potential for causing chronic ef­
fects following long-term, low-level exposure. 

The presence of toxic chemicals in the marine 
environment presents two types of hazard: hazard 
to the health of humans exposed through con­
sumption of contaminated seafood, and hazard to 
the health of marine organisms and ecosystems. 
The potential dangers of contaminated seafood 
are recognized by some consumers (Anonymous, 
1992), though not by all (Tilden et al., 1997; 
Burger et al., 1998). For chemicals such as methyl 
mercury and PCBs, seafood represents the pri­
mary source of human exposure (excluding occu­
pational and accidental exposures) (Friberg, 1988; 
Svensson et al., 1991; Egeland and Middaugh, 
1997). For other chemicals, intake from seafood 
merely augments exposure from other sources. 
The evidence for acute and chronic health effects , 
associated with consumption of chemicals from 
seafood has been reviewed (Swain, 1988; Boyer et 
al., 1991; Dawe and Stegeman, 1991; Kimbrough, 
1991; Ahmed et al., 1993a; Grandjean et al., 1997; 
Longnecker et al., 1997). 

In addition to their potential impact on human 
health, marine pollutants pose a well documented 
risk to the health of marine organisms and 
ecosystems. Some marine animals exhibit levels of 
certain contaminants, such as PCBs, that are 
among the highest ever reported (Tanabe and 
Tatsukawa, 1992; Elskus et al., 1994; Norstrom 
and Muir, 1994; Lake et al., 1995; Bello et al., 
2001). In some cases, such as PAR-induced tu­
mors in flatfish (Malins et al., 1985; Murchelano 
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and Wolke, 1985) or organotin effects in gastro­
pod molluscs (Gibbs and Bryan, 1986; Alzieu, 
1991), the data suggesting an adverse impact are 
dramatic and compelling. In other cases, such as 
the possible impact of PCBs and other 
organochlorines on marine mammal reproduc­
tion, unequivocal evidence of health effects has 
been difficult to obtain (Addison, 1989). 

Because of the presence and potential impact 
of marine pollutants in humans and wildlife, the 
need for monitoring the fate and effects of these 
chemicals has been recognized for many years 
(Pearce and Despres-Patanjo, 1988; Ahmed, 1991; 
Pearce, 1997). The choice of environmental ma­
trix to be monitored depends on the chemical of 
concern, potential targets, and specific questions 
being asked. For monitoring of actual human 
exposure, it is possible to analyze several human 
tissues such as blood, milk, urine, even hair or 
placenta. Marine organisms - including those 
used as seafood as well as other organisms not 
usually consumed by humans - can also be 
examined. Abiotic matrices such as sediments and 
water are often monitored as a source of poten­
tial exposure of humans and wildlife. For lipophilic 
organic contaminants, semipermeable membrane 
devices (SPMDs) are emerging as an efficient way 
to sample, in an integrative way, the bioavailable 
fraction of organic contaminants in aqueous envi­
ronments (e.g. Huckins et al., 1996; Gale et al., 
1997). 

Table 1 

2. Approaches for monitoring the marine 
environment 

There are several approaches that can be used 
to measure chemical contaminants in the marine 
environment (Table 1). For many chemicals, mon­
itoring by analytical chemistry has provided an 
extensive database on levels of contamination in 
various sites and species. The utility of this ap­
proach is perhaps best illustrated by the US and 
International 'Mussel Watch' and 'Status and 
Trends' programs, in which concentrations of a 
variety of contaminants measured in bivalve mol­
luscs have been used to document geographic and 
temporal differences in coastal pollution (Gold­
berg, 1975; Farrington et al., 1983, 1987). 

The advantages of analytical chemical methods 
include their sensitivity and specificity. However, 
these methods are often quite costly, sometimes 
precluding their use in routine monitoring (Far­
rington et al., 1987). Alternatives to chemical 
analyses include indirect techniques such as im­
munoassays using chemical-specific antibodies 
(Szurdoki et al., 1996), or biosensors, which use 
antibodies or other recognition molecules cou­
pled to electrochemical signal-transduction sys­
tems (Bender and Sadik, 1998). 

Assays employing biomarkers offer another 
powerful alternative to chemical analyses. Meth­
ods based on biological effects and their underly­
ing mechanisms can complement, and for some 

General approaches for environmental monitoring and specific application to HAHs (especially dioxin-like compounds) 

General approaches 

• Chemical analysis 
• Immunoassay for chemicals 
• Biosensors 
• In vivo biomarkers of exposure 
• In vivo bioassays 
• In vitro bioassays 

0 Receptor-binding assays 
0-Enzymeinhibition assays 
0 HNA-binding assays 
0 Native responses in cell culture 
OReportergeneassays 

Examples for HAHs 

GC-ECD; GC-MS 
ELISA for PCBs or PCDDs 
Biosensor for PCBs 
CYPlA induction in vivo 
Fish early life stage bioassay 

Ah receptor binding assay 
NA 
ORE-binding gel-shift assay 
CYPlA induction in cell culture 
DRE-Iuciferase construct expressed in cell culture 

See text and Tables 2 and 3 for references. Abbreviations: GC: gas chromatography; -BCD: electron capture detection; MS: mass 
spectrometry; DRE: dioxin-responsive element; NA: not applicabk.· ' · 
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applications could replace, the use of analytical 
chemistry in monitoring the marine environment. 
The major advantages of such biological, mecha­
nism-based methods are their toxicological speci­
ficity, rapidity, and low cost. Here, 'toxicological 
specificity' refers to the relationship between the 
assay response and the toxic potential (rather 
than simply the contaminant concentrations) of 
the sample being analyzed. McLachlan (1993) 
called this 'functional toxicology'. Biological as­
says include in vivo biomarkers, in vivo bioassays, 
and in vitro bioassays. 

2.1. In vivo biomarkers 

Biomarkers are biochemical, physiological, or 
other types of biological changes that indicate the 
presence or effects of xenobiotic compounds 
(Committee on Biological Markers of the Natio­
nal Research Council, 1987; Henderson et al., 
1989; Huggett, 1992; Decaprio, 1997). In addition 
to the commonly used biomarkers of exposure 
and effect, which are especially useful in biomoni­
toring, some biological characteristics can be used 
as biomarkers of susceptibility (Nebert, 1980; 
Nebert et al., 1996; Perera, 1997). The term 'in 
vivo biomarker' is used here in reference to 
changes occurring in organisms as a result of 
'natural' exposure to contaminants in their envi­
ronment. Numerous studies have shown strong 
relationships between in vivo biomarker respon­
ses and exposure to specific classes of marine 
contaminants. The various types of biomarkers 
that have been or might be used to monitor the 
marine environment, their advantages and disad­
vantages, chemical and biological specificity, and 
methods of analysis have been thoroughly re­
viewed (Huggett, 1992; Stegeman et al., 1992). 

2.2. In vivo bioassays 

In vivo bioassays involve the deliberate expo­
sure of test animals to contaminants or contami­
nated materials. This might occur in "the field (e.g. 
caging studies) or in the laboratory. In the context 
of seafood safety, the mouse bioassay for shellfish 
contaminated with algal toxins (Horwitz, 1990) is 
one example of an in vivo bioassay. Such assays 

have the advantage of measuring integrated re­
sponses at the whole-organism level. In addition, 
in vivo bioassays may be used to estimate the 
bioavailability of contaminants in environmental 
samples. Disadvantages include the costs and time 
required for studies using whole animals. 

2.3. In vitro bioassays 

Increasingly, bioassays employing cultured cells 
or cellular extracts are being developed and used 
to detect the presence of contaminants. Examples 
include assays that measure receptor-binding, en­
zyme inhibition, or changes in gene expression in 
cultured cells. (Table 1). Such in vitro bioassays 
have numerous advantages over in vivo and 
chemical techniques, including speed, low cost, 
and biological (i.e. mechanistic) specificity. How­
ever, because the endpoints and exposure condi­
tions may be quite different from those of concern 
in the target species, extrapolation of in vitro 
bioassay results to in vivo situations requires great 
caution. The features of the various monitoring 
approaches will be discussed below in more detail 
using dioxin-like compounds as an example. 

3. Monitoring for the presence and effects of 
dioxin-like compounds 

3.1. Halogenated aromatic hydrocarbons: multiplicity 
and mechanism of action 

Halogenated aromatic hydrocarbons (HAHs) 
are among the most prominent marine contami­
nants due to their extensive production, their 
persistence, and the extreme toxic potency of 
some of the individual compounds (congeners). 
HAHs are also among the most controversial 
marine pollutants, because of the uncertainty sur­
rounding estimates of the degree of hazard asso­
ciated with present levels of exposure. Included 
among the HAHs are the polychlorinated 
dibenzo-p-dioxins (PCDDs), polychlorinated 
dibenzofurans (PCDFs), polyhalogenated 
biphenyls (PCBs and PBBs), polyhalogenated 
diphenyl ethers (PCDEs and PBDEs), and several 
other classes of compounds (Poland and Knut:>on,_ 
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1982; Safe, 1990). Together, there are hundreds 
of HAH isomers and congeners, which vary in the 
number and position of their halogen substituents 

. and thus in their environmental fates and toxic 
potencies. This multiplicity of compounds, fates 
and effects, along with known or potential species 
differences in sensitivity, contributes to the dif­
ficulty in evaluating their human and ecological 
risks. 

There are several mechanisms by which various 
HAHs cause toxicity (Poland and Knutson, 1982; 
Fischer et al., 1998; Hansen, 1998). By far the 
most well known is that involving a high-affinity 
interaction with the aryl hydrocarbon receptor 
(AHR), a transcription factor that is activated by 
HAH binding. 2,3, 7,8-tetrachlorodibenzo-p-dioxin 
(TCDD), the most toxic HAH, also has the great­
est affinity for the AHR. Toxicity resulting from 
exposure to TCDD and other AHR ligands is 
thought to occur as a result of AHR-dependent 
changes in gene expression or interference with 
other signaling pathways, leading to the disrup­
tion of cell growth and differentiation (Poland 
and Knutson, 1982; Nebert, 1989; Whitlock, 1993). 
The biochemistry and molecular biology of the 
AHR and its role in the mechanism of HAH 
action have been reviewed (Swanson and Brad­
field, 1993; Hankinson, 1995; Schmidt and Brad­
field, 1996; Rowlands and Gustafsson, 1997; Hahn, 
1998a). 

3.2. The toxic equivalency (TEQ) approach 

The subgroup of HAHs that act through the 
AHR are sometimes referred to as 'dioxin-like 
compounds'. These include the 2,3,7,8-substituted 
PCDDs and PCDFs, non-ortho-substituted (and 
some mono-ortho-substituted) PCBs and other 
HAH congeners that are able to achieve a planar 
configuration. There are large differences among 
these HAH in their affinities for the AHR, and 
consequently, in their biological potencies. In an 
attempt to deal with the multiplicity of HAH 
compounds and potencies _and to ·express the po­
tential biological activity of complex mixtures of 
HAH, a toxic equivalency concept has been de­
veloped (reviewed in Bellin and Barnes, 1985; 

, Eadon et al., 1986; Safe, 1987, 19.90; Ahlborg et 

al., 1992; van den Berg et al., 1998). In this 
approach, the biological or toxic potencies of 
individual HAH are expressed relative to a 
benchmark HAH, usually 2,3,7,8-TCDD. Using a 
variety of endpoints or responses, a relative bio­
logical potency or 'toxic equivalency factor' (TEF) 
can be determined for each HAH, and the TEF 
values can be used in conjunction with data on 
the concentrations of the individual PHAH to 
determine the 'calculated dioxin (TCDD) equiva­
lents' (TEQcalc) in a particular environmental 
sample. Similarly, the response to mixtures of 
HAHs in a bioassay can be expressed relative to 
that of TCDD, in the form of a 'bioassay-derived' 
TEQ value (TEQbioassay). 

The toxic equivalency approach is an attempt 
to provide an integrated assessment of the toxic 
potential of environmental mixtures. In relies on 
a number of assumptions, including the absence 
of non-additive interactions (e.g. antagonism, syn­
ergism) among the components of the mixture 
(Safe, 1990; Ahlborg et al., 1992, 1994). Although 
not perfect, the TEQ concept is extremely useful 
in monitoring the presence of dioxin-like com­
pounds in aquatic environments. In addition, 
TCDD equivalents are being used increasingly in 
risk assessments as a replacement for exposure 
measures based only on TCDD or total PCBs 
(Barron et al., 1994; van den Berg et al., 1998; 
Various authors, 1998). 

3.3. Approaches for monitoring for dioxin-like 
compounds (T'able I) 

3.3.1. Analytical chemistry, immunoassay, and 
biosensors 

Over the past 20 years, congener-specific meth­
ods for detecting and quantitating HAHs in envi­
ronmental matrices have been developed by sev­
eral laboratories (Ballschmiter and Zell, 1980; 
Rappe et al., 1981; Safe et al., 1985; Norstrom et 
al., 1986; Tanabe et al., 1987; Duinker et al., 
1988; Peterman et al., 1996). The methods cur­
rently in use employ gas chromatography with 
detection by electron capture or mass spectrome­
try and thus are exquisitely sensitive and specific. 
These methods have been used to detect dioxin­
like compounds in a variety of marine environ-



54 M.E. Hahn I The Science of the Total Environment 289 (2002) 49-69 

ments, including remote regions such as the Arc­
tic and Antarctic, the open ocean and the deep 
sea (Risebrough et al., 1976; Stegeman et al., 
1986; Ono et al., 1987; Norstrom et al., 1988). 

An alternative to analytical chemical detection 
is provided by immunoassays that utilize anti­
bodies that recognize specific classes of HAHs. 
For example, antibodies against PCBs, PCDDs, 
and PCDFs have been developed and are being 
used in enzyme-linked immunosorbent assays 
(ELISA) to measure PCB contamination (e.g. 
Zajicek et al., 1996; Suguwara et al., 1998). 

More recently, analytical methods based on 
biosensor technology have been developed. Many 
of these are based on the interaction of HAHs 
with specific antibodies immobilized on probes 
that transduce the physicochemical changes re­
sulting from the antigen-antibody interaction into 
electrochemical signals that can be transmitted to 
a detector (e.g. Bender and Sadik, 1998). Though 
not yet widely used, these methods have the po­
tential to provide continuous, real-time data on 
HAH concentrations in some environments. 

3.3.2. In vivo biomarkers 
The concept of biological changes or 'bio­

markers' as useful indicators of exposure and 
effect has emerged over the past 15 years as our 
understanding of mechanisms of chemical toxicity 
has grown. The most commonly measured bio­
marker of exposure to dioxins and dioxin-like 
chemicals is the induction of cytochrome P450 1A 
(CYP1A). CYP1A is induced following the bind­
ing of these compounds to the AHR; it occurs in 
parallel with the AHR-dependent changes in gene 
expression that are responsible for dioxin toxicity. 
In experimental studies with individual com­
pounds, dioxin-like toxicity and induction of 
CYP1A are highly correlated (Safe, 1987, 1990). 
In this way, the CYP1A induction response is a 
surrogate for AHR-dependent toxicity. In addi­
tion, induction of CYP1A can also be directly 
responsible for some forms of HAH toxicity. This 
may occur, for example, through tire generation 
of reactive oxygen species (Toborek et al., 1995; 
Schlezinger et al., 1999, 2000). Such a mechanism 
could be important for some endpoints of concern, 
such as cardiovascular toxicity involved in early-

life stage mortality in fish (Stegeman et al., 1989; 
Cantrell et al., 1996; Guiney et al., 1997). How­
ever, because the role of CYP1A in toxicity is not 
yet firmly established, this response is considered 
primarily a biomarker of exposure, and sometimes 
a biomarker of biochemical effect, but not a 
biomarker of toxic effect. 

In the field, CYP1A induction has been shown 
to be highly correlated with the presence of AHR 
ligands in vertebrate animals and their environ­
ment (Stegeman and Hahn, 1994; Bucheli and 
Fent, 1995). Although most commonly assessed 
by measuring one of its catalytic activities (aryl 
hydrocarbon hydroxylase [AHH] or ethoxyresoru­
fin 0-deethylase [EROD]), CYP1A can also be 
determined by measuring immunodetectable 
CYP1A protein (Stegeman et al., 1986) or 
messenger RNA (Haasch et al., 1993). Induction 
of CYP1A has been used as a biomarker of 
exposure to dioxin-like compounds in fish (Payne, 
1984; Goks0yr and Forlin, 1992; Stegeman and 
Hahn, 1994; Bucheli and Fent, 1995), birds (Rat­
tner et al., 1989), marine mammals (White et al., 
1994; Letcher et al., 1996), and humans (Wong et 
al., 1986; Lucier et al., 1987; McLemore et al., 
1990; VandenHeuvel et al., 1993). 

As with any biomarker, the use of CYP1A 
induction to indicate HAH exposure is limited by 
the biological specificity of the response (Huggett, 
1992; Stegeman et al., 1992). Measurement of 
CYP1A expression provides information relevant 
to exposure only in those organisms possessing 
the appropriate response mechanism (i.e. an in­
tact AHR pathway, linked to regulation of 
CYP1A). In general, a functional AHR-CYP1A 
pathway exists in most vertebrates, including bony 
and cartilaginous fish, amphibians, birds, reptiles, 
and mammals (Hahn et al., 1992; Stegeman and 
Hahn, 1994; Hahn, 1998a). However, use of 
CYP1A induction as a biomarker is not appropri­
ate for organisms whose ancestors diverged prior 
to the evolution of an HAH-responsive 
AHR/CYP1A system. For example, the presence 
of an HAH-responsive AHR pathway has not 
been confirmed in aquatic invertebrates (Denison 
et al., 1985; Hahn et al., 1994; Brown et al., 1995; 
Hahn et al., 1997; Livingstone et al., 1997; Hahn, 
1998a) and many invertebrates or early verte-
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brates appear to be non-responsive to dioxin-like 
compounds as assessed by CYP1A assay or toxic­
ity testing (Goks0yr et al., 1991; West et al., 1997; 
Hahn et al., 1998). Moreover, invertebrate AHR 
homologs do not appear to bind TCDD or other 
typical AHR ligands (Powell-Coffman et al., 1998; 
Butler et al., 2001). Another situation in which 
CYP1A induction would not be an appropriate in 
vivo biomarker occurs when populations of nor­
mally responsive species develop HAH resistance 
or tolerance through physiological acclimation or 
genetic adaptation (reviewed in Hahn, 1998b). In 
such cases, the use of CYP1A expression as an 
index of exposure would be misleading, providing 
false negative data. 

3.3.3. In vivo bioassays 
Experimental exposure of animals to mixtures 

of contaminants in in vivo bioassays has been 
used to assess the potential health effects of 
consuming contaminated food and to determine 
the amount of biologically active components in 
environmental mixtures. For example, studies 
have determined the health effects of feeding 
contaminated fish, or feed made from such fish, 
to mice (Cleland et al., 1987), seals (Reijnders, 
1986), mink (Heaton et al., 1995), birds (Summer 
et al., 1996), and fish (Leatherland and Sonste­
gard, 1982). Other investigators have examined 
the dioxin-like activity of various environmental 
extracts by exposing fish or bird eggs and moni­
toring early-life stage toxicity (Walker et al., 1996; 
Wilson and Tillitt, 1996; Powell et al., 1997) or 
development of tumors (Metcalfe and Sonstegard, 
1985; Metcalfe et al., 1990). A major advantage of 
such in vivo bioassays is their direct relationship 
to endpoints of concern, such as reproductive and 
developmental effects or cancer, in exposed ani­
mals. 

3.3.4. In vitro bioassays 
Several types of in vitro bioassays are available 

for monitoring dioxin-like compounds (Table 2); 
these offer advantages in speed and.cost as com­
pared to many of the methods discussed above. 
As with in vivo biomarkers, the in vitro assays are 
mechanistically based, providing an integrated 

/ measure of the biologically active component of 

an environmental mixture. Although some of the 
in vitro assays are less sensitive than chemical 
analysis, others approach or equal the latter 
methods in this regard (Table 2). 

One type of in vitro assay measures the ability 
of compounds or mixtures to compete with radi­
olabeled dioxin (TCDD or dioxin analog) for 
binding to the Ah receptor. Competitive 
receptor-binding assays using [125 1]2-iodo-7 ,8-di­
bromodibenzo-p-dioxin (Bradfield and Poland, 
1988) and [3H]TCDD (Hu et al., 1995; Schneider 
et al., 1995) have been described. A disadvantage 
of these assays is that they do not distinguish 
between receptor agonists (compounds that bind 
to the receptor and activate transcription) and 
receptor antagonists (compounds that bind but do 
not activate). 

The ability of compounds or mixtures to bind 
to the AHR and activate or 'transform' it to its 
DNA-binding form can also be used as an in vitro 
bioassay for dioxin-like compounds. Receptor 
transformation and DNA binding are determined 
by an electrophoretic mobility shift or gel shift 
assay, in which specific protein (AHR)-DNA com­
plexes are detected by their altered mobility dur­
ing electrophoresis (Denison et al., 1988). Gel 
shift assays can be quite sensitive, and have been 
used to detect the presence of Ah receptor ago­
nists in numerous types of samples (Denison et 
al., 1998; Seidel et al., 2000). However, like com­
petitive binding methods, these assays do not 
necessarily distinguish between AHR agonists and 
antagonists, leading to high rates of false positive 
results (Seidel et al., 2000). 

Bioassays using responses in cell culture (cell 
culture bioassays) are the most sensitive of the in 
vitro methods.1 Cell culture assays to measure 
dioxin-induced changes in gene expression utilize 
either a native (i.e. intrinsic) response such as 
CYP1A induction, or increased expression from 
an artificial construct containing a reporter gene 

1 Cells in culture are referred to variously as in vitro, in 
vivo, or ex vivo, depending on the perspective and bias of the 
investigator. The term in vitro is used here in recognition of 
the artificial nature of these cell culture bioassays, as com­
pared to responses measured in whole animals. 
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Table 2 
Relative sensitivities of in vitro assays for dioxin-like compounds 

Response or 
Endpoint 

Celljtissue 
type 

EC50 
(nM) 

Minimum detection limit3 References 

(pM) (pgjwell) (fmoljwell) 

Ah receptor binding 
Ah receptor binding 
DREbinding 

DREbinding 
EROD 

EROD 
EROD 
EROD 
EROD 
EROD 
EROD 

EROD 

EROD 
EROD 

mouse liver 
mouse liver 
guinea pig liver 

guinea pig liver 
H4IIE (rat) 

H4IIE (rat) 
H4IIE (rat) 
H4IIE (rat) 
H4IIE (rat) 
HepG2 (human) 
Chick embryo 
hepatocytes 
PLHC-1 (fish) 

PLHC-1 (fish) 
RTL(trout) 

RTH-149 (trout) 
Chick embryo 
hepatocytes 
T13 (mouse) 

0.15 
0.028 

0.080 
0.017 
0.020 
0.006 
0.1 
O.o15 

0.012 

0.006 

0.002 

0.35 

lOlL (human) 0.35 

1-5 

2.4 

50 
1.0 

3 

<6 

100 
1 

100 

1 

100 
3.2 
0.04 

-0.2 

10 

10 
0.19 

16b 
0.16 

0.48 

0.25 
<1 

1.1 

10 

31 
0.6 

1.5 

0.76 
<3 

3.5 

(Schneider et al., 1995) 
(Bradfield and Poland, 1988) 
(Yao and Denison, 1992) 

(Seidel et al., 2000) 
(Bradlaw and Casterline, 1979 
Trotter et al., 1982) 
(Sawyer and Safe, 1982) 
(Tillitt et al., 1991b) 
(Sanderson et al., 1996) 
(Wiebe! et al., 1996) 
(Wiebe! et al., 1996) 
(Kennedy et al., 1993b, 1995) 

(Hahn et al., 1993, 1996; 
Hestermann et al., 2000) 
(Villeneuve et al., 1997) 
(Clemons et al., 1994, 1996; 
Bois et al., 1997) 
(Richter et al., 1997) 
(Sinclair et al., 1997) 

(El-Fouly et al., 1994) 

EROD 
Uroporphyrin 

accumulation 
Alkaline 

phosphatase 
Luciferase 
Luciferase lOlL (human) 0.09 100 65 200 

(Postlind et al., 1993) 
(Anderson et al., 1995; 
Jones and Anderson, 1999) 
(Garrison et al., 1996) Luciferase 

Luciferase 
Luciferase 
Luciferase 
Luciferase 
Luciferase 

H1Ll.lc2 (mouse) 0.03 
others 
H1Ll.lc2 (mouse) 0.68 
H4IIE-Luc (rat) 0.0056 
RTL 2.0 (trout) 0.064 
H4IIE-Luc 0.010 
H4IIE-Luc 
Hepa-1-Luc 

3 Minimum detection limit for TCDD or TEQ. 
bAssuming 5 ml mediumjplate. 

0.1-1.0 

100 
0.8 
4 

(e.g. luciferase) under control of specific regula­
tory elements that are able to respond to dioxin­
like compounds. 

The use of CYP1A induction in cell culture 
bioassays as an integrated measure of dioxin-like 
compounds was first ·described by Bradlaw and 
colleagues more than 20 years ago (Bradlaw and 
Casterline, 1979; Bradlaw et al., 1980; Trotter et 
al., 1982) (see also Niwa et al., 1975). Since that 
time, other investigators have offered severaLim-

1.61 
0.065 
0.32 
0.16 
0.032 

0.2 

0.5 
0.1 

(Ziccardi et al., 2000) 
(Sanderson et al., 1996) 
(Richter et al., 1997) 
(Murk et al., 1996) 
(Murk et al., 1997) 

provements in speed and sensitivity, including the 
use of multi-well plates and fluorescent plate 
readers (Tillitt et al., 1991b; Donato et al., 1993; 
Kennedy et al., 1993b, 1995; Tysklind et al., 1994; 
Hahn et a!., 1996). The methods have been fur­
ther expanded to include measurements of im­
munodetectable CYP1A protein and mRNA 
(Herrero and Castell, 1994; Bruschweiler et al., 
1996; Hahn et al., 1996; Zabel et al., 1996; Scholz 
et a I .. 1_997). Published reports ·using such .assays 
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are abundant; cell types employed have included 
primary cell cultures and continuous cell lines 
from numerous species (see below). 

Although the value of cell culture bioassays has 
been demonstrated repeatedly, there has been 
increasing recognition of the potential pitfalls as­
sociated with the measurement of CYP1A cat­
alytic activities in cultured cells. Biphasic concen­
tration-response curves have been observed of­
ten in studies examining induction of CYP1A 
activities in cell culture (Sawyer and Safe, 1982; 
Hahn et al., 1993; Kennedy et al., 1993b) and 
recent studies have shown that some HAHs and 
P AHs, at high concentrations, can inhibit CYP1A 
activity (Gooch et al., 1989; Hahn et al., 1993; 
Besselink et al., 1998; Willett et al., 1998). The 
result of this inhibition is that the measured activ­
ity (e.g. EROD) does not reflect the amount of 
induced CYP1A protein (Hahn et al., 1996). One 
consequence of this is that concentration­
response (activity) curves obtained in cell culture 
appear to be shifted to the left because of the 
inhibition of activity at high concentrations of 
inducer. This leads to a lower apparent EC50 for 
induction and thus to an overestimation of biolog­
ical potency (Hahn, 1994, 1996; Hahn et al., 1996; 
Petrulis and Bunce, 1999). Measurement of 
CYP1A protein (Hahn et al., 1993, 1996; Br­
uschweiler et al., 1996) or mRNA (Zabel et al., 
1996) provides more reliable estimates of in vitro 
CYP1A-inducing potency. 

The possibility of artifacts associated with using 
the native CYP1A response, along with the po­
tential for enhanced sensitivity, has stimulated 
the development of reporter gene systems for 
measuring dioxin-like compounds in cell culture 
bioassays (Postlind et al., 1993; El-Fouly et al., 
1994; Murk et al., 1996). In these systems, re­
porter genes such as Iuciferase are inserted into a 
plasmid, under control of dioxin-responsive en­
hancer elements (DREs; also known as xenobi­
otic-responsive enhancers or XREs). When used 
together with a sensitive luminometer, cells ex-

_pressing such reporter constructS' offer approxi­
mately three- to 10-fold greater sensitivity than 
cells using the native CYP1A response (Sander­
son et al., 1996; Richter et al., 1997); detection of 
as little as 0.1 fmol (32 fg) of TCDD is possible 

with this method (Table 2). Moreover, since lu­
ciferase activity appears not to be inhibited by 
HAHs, this artifact is avoided (Murk et al., 1996; 
Sanderson et al., 1996). Species-specific, recombi­
nant cell lines have been engineered using cells 
from fish (Richter et al., 1997) and several species 
of mammals, including humans (Postlind et al., 
1993; Garrison et al., 1996). 

3. 4. Applications of Cell culture bioassays for 
environmental monitoring of dioxin-like compounds 

Cell culture bioassays have been used by many 
investigators to assess contamination of dioxin­
like compounds in many different types of envi­
ronmental samples (Table 3). In general, these 
assays have provided results that correlate closely 
with data from chemical analysis of dioxins 
andjor PCBs in the same samples or samples 
from the same sites (Jones et al., 1993; Kennedy 
et al., 1996; Giesy et al., 1997; Willett et al., 1997; 
Whyte et al., 1998). While most of these studies 
have not focused on seafood per se, the methods 
developed could easily be applied to routine mon­
itoring of dioxin-like contaminants in seafood or 
other marine samples. To avoid the uncertainty 
introduced by species-to-species extrapolation, it 
may be preferable to use human cells or cell lines 
(Postlind et al., 1993; Garrison et al., 1996; Wiebel 
et al., 1996) for screening of seafood. 

As with any analytical technique, the use of cell 
culture bioassays must be accompanied not only 
by an understanding of the underlying mecha­
nisms on which they are based, but also by an 
awareness of potential pitfalls. Problems associ­
ated with the inhibition of CYP1A activity were 
described above. In addition, it is important to 
keep in mind that a large number of structurally 
diverse compounds are capable of activating the 
AHR (Denison et al., 1998). Many P AHs, for 
example, are ligands for the AHR and induce 
AHR-dependent responses in bioassays (Willett 
et al., 1997; Bois et al., 1999; Jones and Ander­
son, 1999; Pent and Batscher, -::2000; Seidel et al., 
2000; Jung et al., 2001; Villeneuve et al., 2001). 
However, because of their lack of persistence, 
P AHs are not thought to produce dioxin-like toxi­
city unless exposure is sustained (Pcl::md and 
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Table 3 
Use of cell or tissue culture bioassays to monitor for environmental contamination by dioxin-like compounds: some examples from 
the literature 

Matrix or sample type Assay ;endpoint: 
--------------------~-------------------------------------------
DRE-Iuciferase CYP1A3

- H4IIE 

Blood plasma or serum (Murk et al., 1997; 
Ziccardi et al., 2000) 

CYP1A- other cell types; 
other endpoints 

Fish or fish eggs 

Bird eggs or yolk sac 

(Trotter et al., 1982; Zacharewski et al., 1989; 
Ankley et al., 1991; Hanberg et al., 1991; 
Smith et al., 1994; van den Heuvel et al., 1994; 
Giesy et al., 1997; Stegeman et al., 2001) 
(Tillitt et al., 1991a, 1992; 

(Bois et al., 1997; 
Whyte et al., 1998) 

(Kennedy et al., 1993a, 1996; 
Hart et al., 1998) Jones et al., 1993, 1994; 

Rattner et al., 1994; 

Marine mammal 
tissues 

Williams et al., 1995; Larson et al., 1996) 
(Hanberg et al., 1991) 

Other vertebrate 
animals 

Shellfish 
Sediments or soils 

(Tillitt et al., 1996) 

(Willett et al., 1997) (Engwall et al., 1997) 
(Engwall et al., 1996 
Huuskonen et al., 1998b; 
Huuskonen et al., 1998c) 
(Villeneuve et al., 1997; 
Huuskonen et al., 1998b) 
(Huuskonen et al., 1998a) 
(Franzen et al., 1988) 
(Gierthy et al., 1984; 

Water 

(Anderson et al., 1995; 
Murk et al., 1996) 

(Murk et al., 1996) 

(Zacharewski et al., 1995) Effluent 
Air 
Soot or fly ash 

( Chiarolini et al., 1997) 
(Kopponen et al., 1994) 

Till et al., 1997) 

3 CYP1A includes EROD and AHH activities, or CYP1A protein or mRNA. 

Glover, 1974; Francis and Smith, 1987; Fragoso et 
al., 1998; Billiard et al., 1999). Thus, a positive 
response in one of the assays listed in Table 2 
could indicate contamination by P AHs or other 
AHR ligands, rather than - or in addition to -
HAHs. In general, PAH- and HAH-dependent 
responses can be distinguished by the time course 
of the response: the former are transient, due to 
metabolic inactivation, whereas the latter are 
more persistent (Poland and Glover, 1974; Rid­
dick et al., 1994; Wiebel et al., 1996; Celander et 
al., 1997). 

It is important to keep in mind that most of the 
assays described above measure only the 'dioxin­
li!~e' (i.e~ AHR-mediated) toxicity of complex mix­
tures. There are other mechanisms by which 
seafood contaminants, including PCBs that are 
not ligands for the AHR, could potentially be 
toxic . to _consumers .of. seafood (Fischer et . al., 

1998; Hansen, 1998). The development of assays 
to screen for the non-AHR-mediated component 
of PCB toxicity is an important future goal. 

3.5. Bioassays for other marine contaminants 

Although the focus of this presentation has 
been on methods for detecting dioxin-like com­
pounds in the marine environment, many of the 
approaches described here for dioxins are being 
used, or could be used, to assess contamination of 
the marine environment - including seafood -
by other types of contaminants (Pierce and Kirk­
patrick, 2001). Cell culture bioassays, in particu­
lar;- have great potential in this regard (Zacharew­
ski, 1997; Fairey and Ramsdell, 1999; Rogers and 
Denison, 2000). Table 4 lists several cell culture 
bioassays that have been developed to measure 
marine toxins, metals, and other contaminants. 
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Table 4 
In vitro bioassays with potential application for routine monitoring of contaminants in seafood 

Toxin or toxicant 

• Natural toxins 
PSP (saxitoxins) 

DSP (okadaic acid; 
dinophysiotoxins) 

ASP (domoic acid) 

NSP (brevetoxins) and 
ciguatera toxin 
(ciguatoxin) 

Maitotoxin 

Pfiesteria toxin 

• Dioxin-like 
compounds 
(dioxins, planar 
PCBs, etc) 

• Environmental 
estrogens• 

• Retinoid 
mimics• 

• Organophosphorous 
insecticides 

• Metals 

Mechanism of action 

Na + channel (blocker) 

Inhibition of protein 
Phosphatase activity 

Glutamate analog 

Na+ channel 
(enhancer) 

Activation of calcium 
channels 

Unknown 

AHR-dependent changes 
in gene expression 

ER agonist or antagonist 
activity 

Activation of gene 
expression controlled by 
retinoid receptor(s) 

Inhibition of 
acetylcholinesterase 

Various 

Bioassay 

Competitive binding to sodium 
channel 
Antagonism of ouabain and 
veratridine-induced cytotoxicity 

Inhibition of protein phosphatase 
activity 

Competitive binding to kainic 
acid receptor 

Competitive binding to sodium 
channel 
Potentiation of ouabain and 
veratridine-induced cytotoxicity 

Induction of c-fosjluciferase 
reporter gene expression 

AHR competitive binding 
DNA-binding (gel shift) 
CYP1A1 (EROD) induction 
Induction of reporter genes under 
control of DRE 

ER competitive binding 
DNA"binding (gel shift) 
Vitellogenin induction 
Induction of reporter genes under 
control of ERE 

Induction of reporter genes under 
control of response elements for 
retinoic acid receptors (RAR) or 
retinoid X receptors (RXR) 

Inhibition of acetylcholinesterase 

Induction of reporter genes under 
control of metallothionein or heat 
shock response elements 

Reference 

(Doucette et al., 1997) 

(Manger et al., 1993, 1995 
Fairey et al., 1997) 

(Simon and Vernoux, 1994; 
Vieytes et al., 1997) 

(Van Dolah et al., 1994) 

(Van Dolah et al., 1994) 

(Manger et al., 1993, 1995 
Fairey et al., 1997 
Dickey et al., 1999 
Poli et al., 2000) 
(Anonymous, 1998; 
Fairey et al., 1999) 

(Anonymous, 1998; 
Fairey et al., 1999) 

see Table 3 

(McLachlan, 1993; 
Gray et al., 1997; 
Zacharewski, 1997; 
Rogers and Denison, 2000) 

(Todd et al., 1995; 
Blumberg et al., 1996) 

59 

(Galgani and Bocquene, 1991) 

(Todd et al., 1995; 
Klimowski et al., 1996) 

•These two examples are intended to be representative of direct-acting agonists or antagonists of any member of the nuclear 
hormone receptor family, e.g. androgen receptor, thyroid hormone receptor, etc. 
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Like the dioxin-responsive assays, many of these 
are mechanism-based methods that integrate the 
biological activity of any compounds that share 
the same mode of action as the target chemical. 

4. Conclusions 

A stated goal of efforts to improve and ensure 
the safety of seafood is to develop an economical 
set of monitoring and inspection practices that 
will minimize the exposure of consumers to haz­
ardous chemicals (Ahmed et al., 1993a,b). Thus, 
'rapid and simple tests should be developed and 
used to screen potentially hazardous fish or shell­
fish at the point of harvest to reduce costs to the 
fishermen and to protect the consumer from tox­
ins and dangerous contaminants' (Ahmed, 1991 p. 
17). Chemical methods of analyses are sensitive 
and specific, but can be expensive and provide 
little information on the actual or potential bio­
logical activity of the contaminants. Biological 
indicators or biomarkers can be used to indicate 
the presence and (in some cases) biological ef­
fects of contaminants in marine animals. In vitro 
bioassays using mechanistically-based biomarker 
responses provide an integrated measure of the 
biologically active components of environmental 
mixtures. Such assays are rapid and inexpensive 
and thus offer great potential for routine moni­
toring of marine resources, including seafood. 
Cell culture assays such as those described in 
Table 4, in combination with other assays, might 
be incorporated into a battery of tests (e.g. Mac­
Gregor et al., 1995; Todd et al., 1995) to rapidly 
and sensitively screen seafood for the presence of 
contaminants of concern. The identity of con­
taminants in samples testing positive (i.e. above 
some action level) in screening tests could be 
confirmed if necessary using chemical analysis. In 
the United States and perhaps elsewhere, such a 
battery of mechanism-based, in vitro bioassays 
could be part of monitoring efforts under the 
recently adopted Hazard Analysis and Critical 
Control Point (HACCP) programs (Food and 
Drug Administration, 1994). 

Improved monitoring of seafood for chemical 

contaminants is important for minimizing the po­
tential for adverse human health effects due to 
these contaminants. However, it must also be 
recognized that in many ways our ability to mea­
sure these contaminants, whether by analytical 
chemistry or cell culture bioassay, has progressed 
beyond our ability to interpret the data in terms 
of the level of risk to human or environmental 
health. As we develop more efficient ways to 
detect ever lower concentrations of contaminants 
in the marine environment, we must also strive to 
improve our ability to accurately predict the risk 
of these low level exposures, and in the interim, 
to better communicate the uncertainty inherent 
in the current risk assessment process (Cordle et 
al., 1982; Maxim and Harrington, 1984; Kim­
brough, 1991; Reinert et al., 1991; Barron et al., 
1994). In addition, recommendations concerning 
consumption of seafood must consider not only 
the risks posed by contaminants, but also the 
benefits provided by this nutritious food source 
(Egeland and Middaugh, 1997). 

Noted added in proof 

Recently, a new cell culture bioassay for detect­
ing dioxin-like compounds has been developed 
using green fluorescent protein (GFP) as re­
porter. This GFP-based assay has a number of 
advantages over earlier luciferase-based assays. 
See Nagy et al. (2001) for details. Additional 
information about HACCP programs can be 
found in National Advisory Committee on Mi­
crobiological Criteria for Foods (1998). 
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