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Abstract 

This essay reviews two important topics in coastal ecology: the work on the relative role of 
bottom-up and top-down controls in natural communities and the loss of wetlands worldwide. In 
salt marshes and other coastal wetlands, bottom-up and top-down mechanisms of control on 
natural communities are pervasive. Bottom-up effects through nutrient supply may propagate to 
upper trophic levels via better food quality, or indirectly by altering water and sediment quality. 
Top-down control by consumers alters lower trophic levels through consumption of primary 
producers, and indirectly by trophic cascades in which higher predators feed on grazers. The 
combined forcing of bottom-up and top-down controls govern assemblages of species in natural 
communities, mediated by physical and biogeochemical factors. Although there is much information 
about biological controls of coastal food webs, more information is needed. Even more important is 
that large losses of wetland are occurring along coastlines worldwide due to a variety of economic 
and social activities including filling, wetland reclamation, and sediment interception. Such losses 
are of concern because these wetlands provide important functions, including export of energy-rich 
material to deeper waters, nursery and stock habitats, shoreline stabilization, and intercept land­
derived nutrients and contaminants. These important functions justify conservation and restoration 
efforts; barring such efforts, we will find it increasingly difficult to find coastal wetlands where we 
can continue to gain further understanding of ecology and biogeochemistry and lack the aesthetic 
pleasure these wetlands provide to so many of us. 
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1. Introduction 

Research done in salt marshes has made many contributions to environmental 
science, and has generated a number of lively controversies. Experimental as well as 
comparative and correlational approaches have all been used in salt marshes, each 
contributing to advances in the field. A comprehensive text, now in a second edition 
(Mitsch and Gosselink, 2000), as well as publication of reviews reported in a major 
conference on recent issues and advances (Weinstein and Kreeger, 2000) make it less 
pressing to revisit the many topics illuminated by work in salt marsh research during 
the time that JEMBE has been in existence, many of which have been explored in its 
pages. 

As in all disciplines, there is an overwhelming plethora of recent publications on salt 
marshes, a seemingly reasonably narrow and specialized topic: a search in just one 
search engine (Aquatic Sciences and Fisheries Abstracts) yielded 991 references that 
appeared just in the decade 1993-2003. Below we include just a few of the many 
worthy references that could have been cited. Drastic curtailing of bibliographic 
citations seems an increasingly unavoidable feature of future reviews of any but the 
narrowest of scientific topics. Fortunately, the availability of the timely Weinstein and 
Kreeger (2000) and Mitsch and Gosselink (2000) compendia makes it somewhat easier 
for us to more narrowly focus this contribution. 

The first part of this essay reviews work in salt marsh environments on the relative 
role of top-down and bottom-up controls in natural communities. This is a topic in 
which differing views have flared in the recent ecological literature, but was not a 
central theme in Weinstein and Kreeger (2000) or Mitsch and Gosselink (2000). There 
should be more than a little interest on this topic, since in fact, human beings are 
conducting worldwide experiments as we fertilize the world's natural waters and over­
fish many top predators. Progress in knowledge of the relative primacy of control by 
consumer activity cascading down food webs, or by nutrients forcing up through food 
webs, or how these controls may interact in specific environments, seem high priorities 
for ecological research. 

Second, it would be remiss here not to re-emphasize a truly major conservation issue, 
the widespread loss of coastal wetlands around the world. Wetland loss has been rightly 
highlighted by many authors in many settings, but given that continuing loss of wetlands 
remains a global issue, it merits revisiting in a tribute to a major international journal 
whose content has from the beginning supported environmental conservation. 

2. Bottom-up and top-down controls of food webs 

There is a venerable history of thought on the search for generalities about how natural 
communities are controlled, from Elton (1927), through the critical and profound 
dialogues between Solomon (1949) and Andrewartha and Birch (1954) and others, to 
the still-seminal "etude" by Hairston et al. (1960). 

Perhaps out of the need to search for broad conclusions, in many recent papers, 
there seems to be a tendency to highlight one or the other mechanism of control. 
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Estuarine researchers, in particular, have written many papers in which distributions, 
composition, and abundance of producers, are, to their satisfaction, explained on the 
basis of nutrient supply alone (Boynton et al., 1982; Nixon et al., 1986; Iverson, 1990; 
Sand-Jensen and Borum, 1991; Paerl et al., 1999; Valiela et al., 2000; Pinckney et al., 
2001 ). Some of these papers add the complicating feature that physical factors-such as 
flushing time-may mediate bottom-up controls of abundance at different trophic 
levels (Nixon, 1988; Pace et al., 1992; Valiela et al., 2000). 

In contrast, many authors emphasize the dominant role of top-down controls of food 
webs, arguing that predators are particularly effective in controlling the composition of 
lower trophic positions in a wide variety of coastal systems. For example, Hughes (1994) 
and Hughes et al. (1999) aver that macroalgal blooms in Jamaican coral reefs were 
controlled by human harvest of herbivorous fish, and storm and disease-related declines in 
abundance of a herbivorous sea urchin. 

In an earlier paper (Foreman et al., 1995), we compiled a few selected passages that, 
although fragmentary and quoted out of context, do convey a sense of the range of views. 
Here, we add a few more: 

Predation serves as the chief source of density-dependent regulation in many animal 
associations (Mills et al., 1987). 

. .. predators ... have the potential to interact strongly with certain prey and to mould 
community structure ... (Paine, 1980). 

... fishes could reverse the overgrowth of coral by macroalgae ... (Jackson et al., 2001 ). 

... the ... weak coupling of N loading and phytoplankton productivity with higher 
trophic levels ... implies that anthropogenic nutrient loading to coastal waters is unlikely 
to result in increased fish biomass ... (Micheli, 1999). 

There may be many ways to produce large numbers of fish, but all must ultimately 
require an adequate supply of ... nutrients ... (Nixon, 2003). 

... the removal of higher trophic levels leaves lower levels intact (if perhaps greatly 
modified), whereas the removal of. .. producers leaves no system at all (Hunter and 
Price, 1992). 

Plants have obvious primacy in food webs; in particular, their primary productivity is a 
fundamental control of higher trophic levels (Power, 1992). 

... virtually all present explanations for the high productivity of estuaries and coastal 
marine areas involve nutrient inputs or nutrient regeneration (Nixon et al., 1986). 

... carnivorous fish production is controlled by the amount of new N annually 
incorporated into phytoplankton biomass and transferred through food webs (Iverson, 
1990). 
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... nutrient supply is related in a fundamental way to the abundance and production of 
animals in marine ecosystems (Nixon and Buckley, 2002). 

Such papers have highlighted the dominance of one control over others, while many 
authors have, instead, dwelled on the complementary action of various biological controls 
operating on populations making up food webs. Fretwell (1977), Oksanen et al. (1981), 
Carpenter et al. (1985), Menge ( 1992), Worm et al. (2000), and others (mimy listed in 
Foreman et al., 1995) have set out modified notions about how biologically mediated 
processes that cascade up and down food webs might control the composition of natural 
communities. 

Therefore, there is an apparent, broad gap in our understanding about the workings 
of major potential controls in food webs. The discrepancies may derive from differ­
ences in approach, interpretation of results, or to actual differences among the 
environments studied. In part, the gap in understanding made evident by the quotes 
cited above may also be a product of the differences in the criteria used to measure 
responses to treatments. For example, Rosemond et al. (2001) experimentally changed 
the supply of phosphorus and the abundance of macroconsumers in a freshwater 
stream in Costa Rica. If the response criterion was rate of loss of leaf litter, the effect 
of more consumers was larger than that of more phosphorus. On the other hand, if 
abundance of insects that grazed on the litter was used as the response criterion, 
phosphorus supply had larger effects than fewer consumers. Conclusions about the 
relative effects of the two treatments, therefore, artifactually depended on the criterion 
used to measure responses. 

We are unable here to tease apart all the reasons underlying the gap in understand­
ing identified above. Instead, below we go on to give a few examples that, to us, 
provide convincing evidence that bottom-up and top-down controls in various 
environments and in coastal wetlands exert meaningful influences, and then move 
on to consider studies designed to examine the relative impress of these controls, 
particularly in wetlands. 

2.1. Bottom-up effects in food webs 

Rate of growth of phytoplankton in near-shore waters is associated to supply of 
nutrients, particularly nitrogen (Downing et al., 1999; Howarth et al., 2000). These 
bottom-up effects can be seen higher up food webs, for example as increased 
abundances of secondary consumers (Nixon et al., 1986). In addition, phytoplankton 
growth responses may be affected by flushing times of the marsh-estuary, other 
hydrodynamic features (Nixon et al., 1986; Pace et al., 1992), and local particulars, 
so that the undoubted relationship of phytoplailkton to nutrients is often one with 
substantial scatter (Micheli, 1999). Most of the relatively weak relationships were 
developed by correlational studies; Nixon and Buckley (2002) review more experi­
mental studies in which increased nutrient supplies can be more causally linked to 
producers and consumers. 

There are significant effects of nutrients on macroalgae and coastal vascular plants 
(Duarte, 1995; Valiela et al., 2000). Many examples exist in various environments. 
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Nitrogen supply limited biomass and distribution of Australian seagrasses (Udy et al., 
1999). Hauxwell et a!. (2001) showed that increases in the limiting nitrogen loads 
thoroughly reshuffle the composition of producers in shallow estuaries, fostering 
epiphytes, benthic macroalgae, and phytoplankton, and, consequently, impairing 
seagrass meadows. In mangrove forests, nutrient supply seems responsible for 
variation in mangrove growth rates in Florida (Onuf et al., 1977) and Southeast Asia 
(Duarte et al., 1998). Similarly, experimentally increased nitrogen supply to salt 
marshes restructured competitive relationships, and altered plant community composi­
tion, morphology, biomass, and production (Valiela et al., 1985; Levine et al., 1998; 
Rogers et al., 1998). 

Bottom-up effects through nutrient supply may propagate up coastal food webs 
beyond the producer level. Nixon and Buckley (2002) concluded that greater nutrient 
(particularly nitrogen) loads not only elevated phytoplankton production, but increased 
consumer production in many coastal systems. A good example of nutrient-consumer 
linkages is the collapse of the crustacean and fish harvest from the nutrient-depauperate 
Eastern Mediterranean after the High Aswan Dam began operation, and reduced the 
transport of nutrients through the Nile Delta. Further corroboration of the dependency 
on nutrients is the recent recovery of the fishery there after delivery of nutrients was 
unwittingly "restored" by the release of nutrient-containing wastewater through the 
Delta (Nixon, 2003). 

Nutrient supply also strongly affects macrophyte-dominated systems. Nutrient­
stimulated macroalgal canopies may, for example, determine success of predaceous 
shrimp feeding on infaunal amphipods and bivalves (Norkko, 1998), of shorebirds 
seeking prey on marsh mudflats, and many other upwardly cascading effects (Raffaeli 
et al., 1998). In Nova Scotia, a collapse of seagrass meadows was followed by sharp 
reduction of populations of Canada geese (Seymour et al., 2002). 

Similar bottom-up effects have been repeatedly reported in food webs of salt 
marshes and mangroves. Nitrogen-enriched salt marsh-fringed estuaries held higher 
concentrations of food particles that were of higher nutritive quality and stimulated 
growth rate of ribbed mussels (Evgenidou and Valiela, 2002). In New England salt 
marshes, experimental addition of nitrogen increased density of grazers by up to 4-fold, 
with responses of different grazer species differing substantially (Vince et al., 1981 ), 
and raised the rate of growth of aphid populations by about 20% (Levine et al., 1998). 
In a Florida mangrove, increased nutrients led to faster growth of leaves, flowers, and 
stems, and more herbivores on mangroves (Onuf et al., 1977). Consumers in marshes 
and mangroves therefore do depend on food quantity. 

There is substantial evidence that bottom-up effects might depend even more on 
nutritive quality of food (Pedersen and Borum, 1996; Hemmi and Jormailanen, 2002). 
Different types of macrophytes have evolved quite distinct chemical make-ups, and 
consumers have specific feeding and assimilation responses to the different food types. 
There are quite variable and diverse bottom-up effects that pervade food webs of salt 
marshes and other macrophyte-dominated environments. In the examples of the New 
England salt marsh (Vince et al., 1981) and Florida mangrove forest (Onuf et al., 
1977), the larger number of herbivores was closely tied to greater nitrogen content of 
the plants. In both cases, more herbivores, of course, fostered grazing: in the mangrove 
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example, the greater nitrogen supply led to a 3-fold increase in loss of leaf production 
to herbivores (Onuf et a!., 1977). Experimental additions of nitrogen about doubled the 
number of a herbivorous leafhoppers in plots in a Florida marsh (Bowdish and Stilling, 
1998); the bottom-up effects, however, weakened further up the food web, since the 
abundance of a wasp parasitic on the leafhopper was not affected. 

Bottom-up effects can also materialize through mechanisms other than trophic 
links. For example, nutrient-stimulated macroalgal canopies foster more frequent 
hypoxic conditions, which, in tum, lowers abundance of grazers (Hauxwell et a!., 
1998). This indirect effect counters the positive effects of more food available for 
consumers, and impairs the ability of grazers to control macrophyte blooms. Similarly, 
for fish, hypoxia may counter the positive effect of more food made available by 
enrichment, by impairing survival and growth, as well as altering foraging behavior 
and distribution of coastal fish (Breitburg, 2002; Deegan, 2002). There may also be 
non-trophic "ecological engineering" effects, such as burrowing and bioturbation. For 
example, Chasmagnathus granulata, an unusually abundant Patagonian crab, altered 
sediment character enough to change suitability for foraging by shorebirds on mudflats 
and marsh areas (Botto et a!., 2000). The effects on sediments by activity of two 
similar Patagonian crab species, however, differed, with one stabilizing, and the other 
making sediment more erodable (Botto and Iribame, 2000). Thus, much as in the case 
of macrophyte nutrient content, species-specific differences prevent ready generalizing 
about "environmental engineering" effects. 

In general, then, bottom-up effects have a chain of well-established consequences: 
more nutrients create blooms of producers, and these blooms in tum, through their 
abundance as well as their composition, variously affect upper trophic levels, by 
providing more and better or worse quality food, or by altering water and sediment 
quality, and hence shifting conditions for consumers. Consumers may or may not 
physically alter the environment in ways that further affect upper levels of food webs. 
In addition, all these bottom-up effects can be further constrained by physical 
processes. 

2.2. Top-down effects of consumers on estuarine food webs 

Consumption of phytoplankton by consumers in salt marshes can be quantitatively 
significant. Ribbed mussels, for instance can filter the entire volume of tidal water 
entering a Massachusetts salt marsh twice daily (Jordan and Valiela, 1982); this would 
suggest the potential for major control of the water column flora .. Microzooplankton 
grazing rates might be equivalent to 73% of the growth rate of estuarine phytoplank­
ton, and in certain places, grazing might partly relieve nutrient limitation of 
phytoplankton growth (Gallegos and Jordan, 1997). Grazing by bivalves is a major 
control on phytoplankton in Danish fjords (Kaas and M0hlenberg, 1996), and where 
alien bivalves have become numerous, such as in San Francisco Bay (Cloern, 2001). 
There are, however, exceptions where grazers have a lesser influence: filtration by the 
abundant oyster Crassostrea virginica in a South Carolina salt marsh estuary, however, 
did not affect composition and abundance of the microbial community in the water, 
except for a modest depletion of nanoflagellates (Wetz et a!., 2002). 
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Some papers report intense top-down control of macrophyte production and 
biomass. Reductions of biomass and cover in certain seagrass meadows and salt 
marshes have been clearly attributed to grazer pressure (Srivastava and Jefferies, 1996; 
Valentine and Heck, 1999; Handa et a!., 2002). Silliman and Bertness (2002) 
experimentally manipulated density of periwinkle snails (600 and 1200 adult snails 
m- 2

) in a Georgia salt marsh, and in these treatments the snails extirpated the grass 
canopy in a matter of months. Earlier studies in the same site reported densities of 
adult snails between 100 and 200 m- 2 (Odum and Smalley, 1959), that energy use by 
the snails was about an order of magnitude lower than grass production (Odum and 
Smalley, 1959), and that adult snails "grew very slowly" (Teal, 1962). Estimates of 
ambient periwinkle densities in other marshes in Florida, Louisiana, and Georgia 
ranged between 0 and 88 snails m- 2 (Subrahmanya:m et a!., 1976). Salt marsh 
herbivores such as the snails therefore do have the potential to control the plants 
they indeed feed upon (Haines and Montague, 1979), but ambient densities may or 
may not reach densities that would exert the potential control. Establishing such 
density thresholds would be of interest. 

The relative ability of certain grazers to consume specific macrophytes (and the 
degree of top-down control) may depend on the presence of chemical defenses in the 
producers, and susceptibility of the grazers to the deterrents (Buchsbaum et a!., 1984; 
Buchsbaum and Valiela, 1987; Valiela, 1995). Macrophytes, for example, may contain 
defensive phenolic compounds that deter grazing by amphipods and snails (Geiselman, 
1980; Lubchenco, 1980; Valiela and Rietsma, 1984), but snow geese may be able to 
thoroughly overgraze marsh grass stands (Cargill and Jefferies, 1984). Chemical 
feeding deterrents and susceptibility are so species-specific as to make it difficult to 
generalize, except that higher plants are more likely to possess grazer deterrent than 
algae, and invertebrate grazers may be more affected than vertebrates. 

There is ample evidence that top-down effects of one consumer on another are 
common in coastal food webs, but that the effects are quite varied. Exclusion of fish, 
crabs, and shrimp from benthic plots in a South Carolina marsh increased density of 
benthic meiofauna by a factor of less than 2 (Bell, 1980). Larger order-of-magnitude 
increases in meiofauna resulted from similar experiments in a Rhode Island salt marsh 
(Hoffman et a!., 1984 ). Experimental exclusions of shorebirds-important predators of 
salt marsh and tidal flat benthos-showed that the responses of abundance of a variety 
of benthic invertebrate species to predation could be significant but were inconsistent 
from one area to another, and varied too much from site to site to be able to generalize 
broadly (Botto et a!., 1998; Botto and Iribame, 1999). Predation by fish and crabs 
potentially controlled population abundance and size classes of snails and amphipods 
in a New England salt marsh, but the relative impact of the top-down control was 
strongly constrained by the complexity of the plant canopy (Vince et a!., 1976). 
Predators were most effective where the canopy was sparse, and ineffective in dense 
canopies. The architecture of the environment thus mediated the degree of top-down 
influence by predators. Different effects of habitat structure were also found in 
Panamanian mangroves, where mangrove seedlings had better survival in forest gaps 
away from the mangrove canopy, where scolytid beetles more frequently attacked 
seedlings (Sousa et a!., 2003). 
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Too little is known about the role of predatory birds and mammals in salt marshes and 
mangroves. Egrets, herons, rails, captors, and many other large vertebrates are common in 
wetlands. Whether these top predators exert pressure on their target foods or simply 
respond to the relative supply of their preferred foods can only be conjectured at present. 
Research on these predators will be of interest, particularly if based on experimentation. 

Top-down "ecological engineering" effects have also been suggested. For example, 
fiddler crabs, through their burrowing, alter irrigation rate and surface area of salt marsh 
sediments exposed to oxic water, and thus can change biogeochemical conditions of the 
marsh sediments, potentially affecting the growth rates of marsh grasses on the sediments 
altered by the crabs. Such alterations are in competition with those of other agents of 
change; for instance, Gribsholt et al. (2003) found that the oxidizing impact of crab 
burrows on sediment biogeochemistry was smaller than that of grass roots and rhizomes. 

Experience in study of wetland systems, plus evidence such as just reviewed above, 
suggest that controlling effects of both nutrient supply and of consumers are 
incontrovertibly evident in coastal wetlands, just as they are in other types of 
environments. It therefore does not take much imagination to suspect that in any 
one environment what we see as the assemblage of species is likely governed by 
combined forcing by both top-down and bottom-up controls (with additional 
constraints provided by the physical and biogeochemical environment, some consider­
ation to historical contingencies as to species that might have been present, and 
architecture of the environment). It is therefore of interest to tum now to efforts made 
to assess the relative synchronous effects of nutrient supply and consumers within a 
variety of aquatic environments. 

2.3. Studies of simultaneous consumer and nutrient effects 

Verity and Smetacek (1996), Cloem (2001), and others reviewed many sources of 
information, and concluded that assemblages of species in planktonic environments are 
likely controlled by a mix of top-down and bottom-up forces, mediated by external 
physical constraints. In freshwater lakes, experiments with grazers and fertilization showed 
that the interplay was complicated. Grazers, indeed, exerted a powerful influence on 
phytoplankton, but the degree of control depended on rate of supply of the limiting 
nutrient, and on the composition of the phytoplankton (less-palatable blue-green taxa 
proliferated under high nutrients) (Carpenter et al., 1985). Similarly, Menge (2000), 
reviewing information on rocky shore environments, concluded that " ... top-down and 
bottom-up processes can be important joint determinants of community structure ... ", and 
the interaction may depend, in tum, on the physical setting. 

Similar conclusions have been reached after study of many macrophyte-dominated 
systems. Lapointe (1999) reviewed several liries of experimental and sampling evidence 
that pointed to increases in nutrient (N and P) supply, in addition to decreased herbivore 
abundance (caused by overfishing, storms, and disease, as argued by Hughes, 1994 ), as 
joint controls on increasing development of macroagal blooms in reefs of Jamaica and 
southeastern Florida. A review of much research on coral reefs (Szmant, 2002), 
however, concluded that it was difficult to generalize because of local complexities, 
but that nutrient enrichment may play a secondary role (relative to the impact of 
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sedimentation, overfishing, and global warming), perhaps because reefs occur largely in 
sites of very high hydrodynamic activity, which, by flushing, mixing, and dilution may 
diminish potential impact of a given supply of nutrients. Perhaps the same can be said of 
rocky intertidal shores or kelp forests, habitats that have produced the core information 
that generated the viewpoint of top-down dominated control. 

Nielsen (2003) set out to manipulate nutrient supply and grazer pressure on biomass of 
algae in pools within the rocky intertidal of the west coast of the U.S. There were no 
evident responses to attempts to either increase nutrient supply or reduce grazers by algal 
groups that made up about 75% of the cover on the rocks. There was, however, a group 
of fleshy algae that were rare in treatments with higher herbivore abundance, and were 
much more abundant where herbivores were in lower abundance. Apparently, the fleshy 
macroalgae were far more palatable to grazers, as reported quite some time ago 
(Geiselman, 1980; Lubchenco, 1980). Biomass of fleshy algae increased by about 5 x 
where higher nutrient supply was provided. These results suggest that only a fraction of 
the algal assemblage (the fast-growing, fleshy, palatable species) was sensitive to the two 
sorts of controls, and that grazers, if sufficiently abundant, could suppress the response of 
these algae to increased nutrient supply. In addition, algae in sites more exposed to wave 
action were unaffected by the apparent treatments; where there was exposure to waves, 
hydrodynamic constraints appeared to overwhelm biological controls in an undefined 
fashion. The overwhelming dominance of hydrodynamic forces in this exposed site may 
have prevented the majority of the algae from responding to the treatments. 

Worm et al. (2000) ran experiments in which nutrient supply was set at four different 
levels (and achieved a variable 6-98% increase in nutrient concentration), and also used 
cages to include and exclude grazers. They then measured the responses of four types of 
macroalgae and benthic diatoms across the seasons. The responses were species- and 
season-specific. Percent cover by Fucus vesiculosus seemed to depend largely on seasonal 
cues, with a minor decrease where there were no grazers and where nitrogen supply was 
highest (probably shaded by other faster-growing algae). Cover of Pilayella littoralis was 
significantly lowered by the presence of grazers, but also evidenced strong unexplained 
cage and seasonal effects. Cover of Ulvopsis grevillei was low and unresponsive to all 
factors. Cover of Enteromorpha spp. was highest during warmer months, and responded 
to both grazing and nitrogen supply (Table I). Although the supply of dissolved inorganic 
nitrogen varied seasonally, and the experimental concentrations were not always higher 

Table I 
Percent cover of Enteromorpha spp. during the warmer months of the year, within treatment combinations where 
nutrient supply was not altered, increased to three different levels, and grazers were excluded by use of cages 

Nutrient treatments No grazers Grazers 
(closed cages) (open cages) 

Ambient 18.5 4 
Low additions 44 3.5 
Intermediate additions 34 8.3 
Higher additions 58 15 

Cage effects were evaluated by open cages, or no cages were deployed. 
Data summarized from Worm et al. (2000). 

Grazers 
(no cages) 

0 
I 
4.8 
9.8 
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than ambient, the addition of nutrients managed to increase cover of Enteromorpha by 
more than 3-fold. The increases in cover seen in the absence of grazers were more than 9-
fold at the lowest (ambient) nutrient supply, and were more than 4-fold at the highest 
nutrient supply. These rough comparisons suggested that both nutrient supply and grazing 
were important controls of cover of Enteromorpha spp., and that the influence of grazers 
was relatively more pronounced at lower nutrient supplies. 

Studies of the top-down/bottom-up question have also been carried out in estuaries 
of New England. Hauxwell et al. (1998) compared the growth rates of the dominant 
macroalgae to the rates of consumption of the dominant grazers (amphipods and 
isopods) in three different estuaries within the Waquoit Bay estuarine complex in 
Massachusetts, U.S. (Fig. 1). The three estuaries were subject to demonstrably different 
rates of land-derived nitrogen loading, and hence provided settings in which the 
nutrient forcing differed significantly. In the estuary with the lowest nitrogen loading 
rate, the relative rates of macroalgal growth and grazing were approximately similar: 
there, grazers could have been expected to exert some degree of control of the resulting 
macroalgal crop. In estuaries subjected to higher nitrogen loads, the macroalgal growth 
rates exceeded the potential consumption by grazers. The result in the more enriched 
estuaries was accumulation of greater biomass of macroalgal canopies (Valiela et al., 
1992, 1997, 2000). The bottom-up effect in this case came about through two 

3 
1:1 

64 kg N ha·1 y·1 • 

' ' ' ' 
' 

' ' ' ' ' 

' ' ' 

520 kg N ha·' y·' 

• High N estuary 

~'~ Mid N estuary 

o Low N estuary 

624 kg N ha·1 y"1 

0~~~~~~~--~·~---·~L_~--~~~~~----~ 
0 2 4 6 8 10 

Growth rate (gdwm-2d-1) 

Fig. I. Comparison of the rate at which grazers (amphipods and isopods) could remove biomass of the macroalga 
Cladophora vagabunda (y-axis) relative to the growth rate of the same macroalga (x-axis), in three different 
estuaries within the Waquoit Bay estuarine system. The three estuaries received different nitrogen loads from land 
(numbers above each of the three loops). From Hauxwell et al. (1998). 
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mechanisms. First, more nitrogen in the water accelerated rates of macroalgal growth, 
particularly those more opportunistic species (Peckol et al., 1994; Valiela et al., 1997). 
In addition, as already noted above, enriched estuaries were exposed to more frequent 
incidence of hypoxic and even anoxic episodes (D' Avanzo and Kremer, 1994), which 
in turn led to lower densities of benthic grazers (Hauxwell et al., 1998). The inability of 
grazers to keep up with increasing nutrient forcing was also suspected for lake 
phytoplankton, as discussed above (Carpenter et al., 1985). 

,r-­
IE 
Cl 

5 
1:1 

>. 
..c 
0. 

BENTHIC ALGAE 

• • • 

~ S~rt~ 

0 

.2 caging experiment 

..c 0 L.--.--.--.--.--,.--,.--,.--,,.--,,:...r:-,.:..,.--,.--r-:-r-:-r:; 
U AMJJASONOJFMAMJJAS 

MEIOFAUNA 

Uncaged 

• fertilized 
... control 

Caged 

o fertilized 
A control 

II) 

0.-. 
::JN 
'01 
·;; E :a,._ 
c: 0 ·- .... 
0 )( 
ci z 

12 

;' 
I 

I 

~ .... "tl-

·~ 
O J F M A M J J A S 

MACROFAUNA AND FISH 
Q) 200 
.5 
G) ... 
0 >...c: =fA 

~e 
-80 

0 ..c: ..... 
.~ '­u..ru a. 

ci 
.s 

.... 
q) 

~00 0. 

ci 
z 

Fig. 2. Interactions among and responses to fertilization and caging by benthic microalg~e (top), meiofauna 
(middle), and benthic macrofauna and fish (bottom). From Foreman et al. (1995) (top and m1ddle) and Wiltse et 
al. (1984) (bottom). 



142 /. Valie/a eta/. I J. Exp. Mar. Bioi. Ecol. 300 (2004) /31-159 

In work on New England salt marshes, Foreman ( 1989) studied the responses of benthic 
microalgae and meiofauna in plots subject to fertilization and predator exclosures (Fig. 2). 
Chlorophyll in benthic microalgae varied seasonally, but abundance was clearly higher in 
fertilized sediments (Fig. 2, top panel). After the start of caging treatments in late spring, 
however, chlorophyll remained high. This suggested that activity of macroconsumers 
checked the abundance of microalgae. A very similar pattern was evident for meiofauna 
(Fig. 2, middle panel). These results are quite clear evidence of the joint influence of top­
down and bottom-up effects in this salt marsh system. 

In the same salt marsh ecosystem, Sarda et al. (1996, 1998) found that after 15 years of 
nutrient enrichment, the macrofauna of fertilized salt marsh creeks was significantly more 
abundant and productive than in control creeks during most of the year, and the response was 
mainly owing to proliferation of two oligochaete species. During summer, the bottom-up 
effect offertilization disappeared, and top-down control by predators (fish, crabs, shrimp) 
controlled macroinvertebrate abundance. There were close linkages between the benthic 
macrofauna and the fish that fed on them (Foreman et al., 1995). As predators consumed 
invertebrates during the active summer season, invertebrate abundance diminished (Fig. 2, 
bottom left), and diet of the fish became more dependent on algae and detritus (Werme, 
1981; Foreman et al., 1995; Sarda et al., 1998). Unlike the effects on meiofauna, macrofauna 
in fertilized plots then became less abundant than in control plots (Fig. 2, bottom right). 
Perhaps these differences arose because of more desirable or available prey species in the 
fertilized plots. Growth rates of fish decreased as summer wore on and prey became less 
available, since the alternate foods were of lesser nutritional quality (Foreman et al., 1995). 
These various linkages across several trophic steps occurred in all experimental treatments, 
and were mediated, not always in similar direction, by the interplay of nutrient supply and 
activity of consumers in the experimental plots. 

The salt marsh studies discussed above highlight the importance of the contingent 
occurrence of specific taxa in specific ecological settings. A different assemblage of 
species, even in the same setting might create a rather different outcome, which could 
easily be interpreted as demonstrating the primacy of one or another control process. If the 
species that were favored by more nutrients were to inherently be not palatable, rather than 
palatable, we might conclude that bottom up features were dominant, for instance. 

In recent years, there have been many studies dealing with specific details of salt marsh 
community ecology that should have some bearing on the issues of top-down and bottom­
up controls. Perusal of the many papers, unfortunately, reveals that the notion of the primacy 
of top-down or bottom-up controls-simple in concept at first thought-turns out to be far 
more nuanced and ill-defined than we might have suspected. The attractive initial 
conceptual simplicity dissolves into a multifaceted series of direct and indirect relationships, 
often species- and locale-specific. The many types of producers (species of phytoplankton, 
benthic microalgae, macroalgae, vascular plants) may have species-specific responses to 
top-down and bottom-up forcings. The same might be said about consumers, and in 
addition, consumers may influence lower trophic links by "cascading effects" based on 
consumption across more than one trophic step, as well as through other more indirect 
mechanisms, such as altered water and sediment quality, and what has been described as 
"ecological engineering." Just as problematic is that conclusions may be pre-determined by 
the response measured, and by the choice of habitat being studied. 

1 
1 
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We began this section by a brief recounting of the search for general theories about the 
biological process that may control food webs, began as early as the 1920s, and extending 
to the present. Now we can ask whether we can generalize to any extent, or are ecological 
assemblages simply particularistic arrays, depending on contingencies of species compo­
sition by chance and history, and from which the effect of nutrients and consumers are 
another intensely local result? That seems a trivial result, since we could make only the 
most limited predictions. 

The foregoing paragraphs reviewed just a few of the many examples available. Even 
these selected examples give perhaps a bewildering variety of results, many quite particular 
to species and sites. It is difficult to generalize, but we might speculate that, first, in most 
environments, both bottom-up and top-down controls will be active, but their relative 
importance will likely depend on local conditions, and composition of biota. Second, effects 
of biological controls will be constrained or mediated by physical features (flushing times, 
wave action, storms, and so on). Third, top-down controls are more likely to play important 
roles where nutrient supplies are relatively low, and might be overwhelmed by bottom-up 
controls as nutrient loads increase to high levels. Fourth, top-down controls are more likely 
to be important where producers are most palatable or susceptible to grazing, but increased 
nitrogen content may increase the susceptibility of macrophytes to grazers. 

From the fourth point above, we might speculate that consumers might be more 
prominent as governors in coastal systems dominated by palatable phytoplankton and 
green macroalgae, less so in systems dominated by less palatable, chemically defended 
vascular plants. If this is so, we might conjecture that top-down control by consumers 
might be less influential in salt marshes and mangroves than in other coastal systems, 
since marsh grasses and mangroves have strong anti-herbivore defenses. All these 
suppositions need support from further studies; repeating experimental manipulation~ of 
nutrients and consumers in a variety of different ecological settings might be a fruitful 
way to synthesize the differences seen in diverse habitats. 

3. Losses of coastal wetland habitats 

The current discussions, and many papers in JEMBE and other journals about the 
relative primacy of different mechanisms that might control food webs in general are 

Table 2 
Condition of estuarine marsh areas in Chesapeake and Delaware bays, based on 1993 satellite imagery 

Sites Condition (as % of the area of wetland) 

Non-degraded Slightly to Severely to 
moderately degraded completely degraded 

Chesapeake Upper and 31 50 19 
Bay middle bay 

Lower bay 28 52 20 
Delaware Bay North shore (NJ) 38 43 19 

South shore (DE) 55 35 10 

Data from Kearney et al. (2002). 
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Fig. 3. P~t and presc~t area of tidal marsh (represented by green) on San Francisco Bay. A version of this figure 
appeared Ill Goals ProJect (1999), files for this version by counesy of Robin Grossinger of the San Francisco Bay 
Institute. 

doubtless an ind~cation of widespread interest in basic understanding of ecological 
assemblages. Wbtle ~e papers pu_blished in journals such as JEMBE have appropri­
ately addressed such tssues of baste research, many of the environments in which the 
wor~ was and is being done are disappearing or being severely altered. This is 
particularly true for coastal wetlands worldwide. 

Table 3 

Conversion ~f coastal wetland habitats in San Francisco Bay, across nearly two centuries, from natural system to 
human-donunated land covers 

Area (acres) 

Ca. 1800 Ca. 1988 %Change 
Native aquatic habitats 
Open bay water 273,911 254,228 - 7 
Tid.1J Oats 50,469 29,212 - 42 
Tidal marsh 189,931 40,191 - 79 

lluman.OOminated aquatic habitats 
Lagoons 84 3620 4209 
Salt ponds 1594 34,455" 2062 
Other altered areas 266 155,021 58.1 79 

Native coastal land habitats 89,357 23,286 74 
Data from Goals Project ( 1999). 

• NoW: being restored t~ marshland under Federal and State suppon and management (L Valiela, 

U.S_. Envtro~~tal ProtectJon Agency, personal communication, and http://www.southbayrestoration.orgf 
ProJCCLdescnptJon.html). 
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Table 4 

Losses o f coastal wetlands in the United States (excluding Alaska and Hawaii), and in Louisiana, 1920s-1990s 

Years ha x lo' ha x lo' year 1 % Loss %year- 1 

Coastal U.S. 
1922- 1954 260 8.1 6.5 0.2 
1950s-1970s 146 7.3" 
1970s- 1980s 29 2.9 1.7 0. 15 
1975- 1985 24 2.4 1.1 0. 11 
1982- 1987 0.4 0.06 1.1 0.18 

Coastal Louisiana 
1958- 1974 10.8 0.86 
1983-1990 6.6 

From data compiled by Mitsch and Gosselink (2000), Brady and Flather (1994), and Dahl and Johnson (1991). 
• Another value for this period of losses of 19 ha x I 03 per year for the period 1954- 1974 seems too high and 

was not included in Ibis table. 

A few examples from North America convey the dimensions of the problem. In 
Chesapeake and Delaware Bays, only 28-55% of the estuarine marshes remained non­
degraded by 1993 (Table 2). Orson et aJ. ( 1998) estimated that by the year 2000 in the 
state of Connecticut, U.S., 45% of the salt marsh area was gone, an estimated 41 % 
was in the course of destruction, and 14% was likely to remain in conservation. ln San 
Francisco Bay, conversion of natural to human-dominated habitats resulted in losses of 
79% of the tidal marsh habitats (Fig. 3), plus losses in the actual area of the Bay, tidal 
flats, as well as adjoining coastal land covers (Table 3); the percentage increase in 
human-dominated environments is startling. Similar large losses of wetlands in 
Louisiana have been recorded (Table 4). In general, the loss of coastal wetland area 
in the U.S. diminished across the 20th century, but that is only because the area of 
wetlands have diminished in magnitude: the percentual rate of loss remained similar 
toward the end of the century (Table 4). One hopes that more recently, awareness of 
the losses have lowered the rate of disappearance. 

Table 5 
Current mangrove swamp areas, % loss, annual loss rate, and % of original area lOSt per year. fo1 the mangroves 
of the continents and the world 

Current mangrove % Loss of mangrove Annual rate of % Original area 
area (krn2) forest area loss (krn2 year- 1 )" lost per year 

Asia 77,169 36 628 1.52 
Africa 36,529 32 274 1.25 
Australia 10,287 14 231 1.99 
Americas 43,161 38 2251 3.62 
World 166,876 35 2.834 2.07 

From data in Valiela et al. (2001a). 

• Annual loss rates calculated from tbe mean number of years beiWcen earliest and latest information 
available for the countries within each continent For the World, for example, the data average out to span 
the period 1980-1997. 
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Table 6 
Uses of mangrove swamp area leading to loss of habitat 

World total (I 03 km2
) 

Shrimp culture 14 
Forestry uses 9.5 
Fish culture 4.9 
Diversion of freshwater 4.1 
Land reclamation 1.9 
Herbicides I 
Agriculture 0.8 
Salt ponds 0.05 
Coastal development 0.05 

%of total 

38 
26 
14 
II 
5 
3 

The data used in this table cover 66% of the world's mangrove swamp area; data were not readily available for the 
remainder area. 
Data from Valiela et a!. (200 Ia), compiled from many sources. 

Losses of coastal wetlands are not just a North American problem. For example, losses 
of mangrove forests across the tropics have reached alarming proportions (Table 5). 
Appropriate data are difficult to find, but best estimates are that, on a worldwide basis, 
perhaps 2% of the mangrove forest area has been lost per year since 1980 (Table 5). 
These losses have amounted to an estimated loss of 35% of the area of mangroves 
present worldwide in I 980. More detailed regional studies (for example, Blasco et a!., 
2001) confirm the worldwide losses. 

Losses of coastal wetland areas come about from a variety of. human activities, 
largely filling and wetland "reclamation" for marshes as was the case, for instance in 
San Francisco Bay (Table 2), or interception of river-borne sediment by levees and 
other earth works, as in the case of losses of Louisiana salt marshes (Reed and De 
Luca, 1997; Day eta!., 2001). A number of other mechanisms lead to losses in area of 
mangrove forests (Table 6). As in all cases of environmental damage, there are good 
economic and social reasons for the losses. Aquaculturists who raise shrimp and fish in 
ponds dug out of erstwhile mangrove forest areas (Table 6) do so because of 
imperative economic pressures. Economic pressures have historically been more 

Table 7 
Percentage of salt marshes (n = 19) that exported materials out to deeper waters 

Materials 

Ammonium 
Nitrate 
Dissolved organic nitrogen 
Particulate organic nitrogen 
Total nitrogen 
Dissolved organic carbon 
Particulate organic carbon 
Total carbon 

Data from Valiela et a!. (200 I b), compiled from many sources. 

Percentage of salt marshes studied that 
exported materials to deeper water.; 

64 
36 

100 
67 

100 
91 
59 
82 
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powerful than arguments for conservation of wetlands. The reason we have lost 
wetlands is that we have repeatedly made the economic decision that other land 
covers are more profitable and desirable. 

If we believe it is worthwhile to maintain coastal wetlands as natural systems, we will 
have to redouble efforts to help the public and political sectors of society better reconcile 
the balance between economic imperatives and the less-apparent benefits provided by 
coastal wetlands. It therefore seems useful to once again review the benefits provided by 
wetlands. 

3.1. Export of energy-rich materials important to food webs of deeper waters 

Eugene Odum's and John Teal's hypothesis that salt ·marshes exported materials to 
deeper waters, has, on the whole, been supported by many studies. A compilation of 
data collected on exchanges of materials between marshes and adjoining deeper waters 
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Fig. 4. Harvest by the shrimp fishery off Louisiana in relation to the area of adjoining coastal wetland (top). 
Metric tons of shrimp caught annually off Louisiana in relation the cumulative loss of adjoining coastal wetland 
(bottom). From Valiela et al. (200lb), data compiled by Turner (1992). 
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shows that the large majority of salt marsh ecosystems exported energy-rich substances 
(reduced nitrogen compounds, dissolved and particulate organic matter) to deeper 
waters (Table 7). These exports are a quantitatively important subsidy supporting 
ecosystem metabolism in the receiving ecosystems. For example, measured exports of 
organic matter from Georgia salt marshes were large enough to furnish the energy 
needed to support the high rates of metabolism in the near-shore Georgia Bight 
ecosystem (Turner et al., 1979; Kinsey, 1981; Hopkinson, 1985). Recognition of the 
role that salt marshes play by providing energetic subsidies that support populations in 
deeper waters has become a leading argument for conservation of salt marshes, at least 
in the west coast of the Atlantic. 

3.2. Nurseries to many species, including commercially important fisheries stocks 

Many species of commercial and ecological importance use coastal wetlands as 
nurseries (Robertson and Duke, 1987; van der Velde et al., 1992; Nagelkerken et al., 
2000; Mumby et al., 2004). An example of the importance of coastal wetlands to 
coastal stocks was given by Turner (1992), who reported that shrimp yields along the 
coast of the Gulf of Mexico were proportional to the area of coastal marsh landward of 
the harvest area (Fig. 4, top). During the 20th century the shrimp harvest fell, and the 
reduction in catch was correlated to the cumulative loss of marshland in the Louisiana 
area (Fig. 4, bottom). These relationships could follow from the nursery role played by 
the marshes for juvenile shrimp, and also from the energy-rich materials exported from 
these marshes to deeper waters off-shore. 

Many commercially important species use salt marshes as foraging areas during their 
early life stages. These include fish such as menhaden, a species that contributes the 
largest biomass to the North American fish harvest, bluefish, and striped bass, among 
many others. A study by Werme (1981) provided evidence as to why fish from deeper 

Table 8 
Comparisons between species of fish resident in Great Sippewissett Marsh and species of fish whose adults live in 
deeper water, but whose young invade salt marsh estuaries 

Resident species' Invader speciesb Paired /-test 

Mean length of fish in marsh 41 ±4 59± 9 n.s. 
Mean length of adults 106± 19 422 ± 121 * 
%Full guts 26±4 59± 9 ** 
% Camivory in diet 48± 13 78 ± 16° •• 
Mouth gape 1.9± 0.3 4±0.6 ** 
No. fish/100 m of shoreline 57± 31 0.8 ± 0.3 ** 
%growth/month 18 ± 4 127 ± 27 ** 
Results of paired /-test are non-significant (n.s.), significant at 0.05 (*), or highly significant(**). 
From Valiela et al. (200lb), data from Werme (1981). 

'Resident species include Menidia menidia, Apeltes quadracus, Fundulus heteroc/itus, Fundulus maja;;s, and 
Cyprinodon variegatus. 

b Invader species included A/osa pseudoharengus, Brevoortia tyrannus, Gasterosteus aculeatus, Tautoga 
onitis, Cenlropristes stria/us, and Pseudopleuronectes americanus. 

c >90% if Brevoortia tyrannus was excluded. 

. { 
I 
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waters might use wetlands as nursery areas (Table 8). Within the salt marsh estuary, the 
size of fish that resided year-round in the estuary did not differ from that of the 
juveniles of species whose adults live in deeper waters ("invaders" in Table 8): there 
are disadvantages to having a larger size in these systems, because larger fish are easily 
stranded in shallow pools at low tide, and are readily eaten by the many top predators 
(herons, egrets, terns, and many other birds) often common in salt marshes. Juveniles 
from deeper-water species had fuller guts, and were far more carnivorous than resident 
fish (Table 8). The invaders achieved these feats by their larger gape (Table 8), which 
arise from the allometry of vertebrates: the young have relatively larger heads than 
adults, and, as it turns out, invaders are all juveniles. Invader species, on average, 
therefore had access to larger food items than the resident species (Fig. 5). Feeding on 
larger prey places stringent bounds on abundance of invaders, because, as is well 
known, larger prey are much less abundant than small prey. Invaders trade off the much 
lower densities than those of resident species, but achieve growth rates an order of 
magnitude larger than resident species (Table 8). Thus, though obligatorily less 
numerous, juvenile invaders from the adjoining deeper-water environment achieved 
fast growth rates in salt marsh estuaries. This faster growth, based, at least in part, on 
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higher relative abundance of larger food items, accounts for the nursery function of salt 
marshes for juveniles of species from deeper waters. An additional, if minor, 
consequence of the nursery role of wetlands is that the movement of the erstwhile 
juveniles to deeper waters add up to a measurable, but modest, export of larger, marsh­
grown units of high-quality organic matter to coastal waters (Deegan, 1993). 

3.3. Habitat for shellfish and finfiSh stocks 

The shallow, protected bays, inlets and lagoons that are fringed by wetlands are rich 
in phytoplankton and other particles that are prime food for suspension feeders, and 
support reasonably dense faunas of other consumers. Wetland-fringed environments are 
almost inevitably areas where humans harvest a variety of stocks. For example, oysters, 
quahogs, scallops, soft-shell clams, blue crabs, winter nounder are among the many 
valuable crops taken from such environments in temperate latitudes of Eastern North 
America. ln warmer waters fringed with mangroves, there is often artesanal harvest of 
mullet, shrimp, mangrove oysters, and mangrove cockles from Mexico to Peru 
(Mackenzie, 2001). Values of crops from Eastern North American marsh-fringed 
environments are typically an order of magnitude larger, on a per-unit area basis, than 
those obtained from grains in terrestrial agriculture (Mackenzie, 1989). 

3.4. Sites for aquaculture 

The food-rich shallow waters fringed by wetlands are potentially useful sites for 
mariculture efforts. For example, artesanal culture of mangrove oysters in Cuba provide 
reasonable yields in less than a year. Shrimp farms have proliferated in many 
mangrove areas (Valiela et al., 200 I a), in part to make use of rich waters. lncidentally, 
feeding of cultured shrimp is supplemented by fish meal mostly manufactured from 
marsh-dependent species such as adult menhaden, harvested from deeper waters. 
Ideally, stocks of shellfish could be grown in high densities in wetland-fringed 
estuaries, and their s uspension feeding could be a tool to improve or restore water 
transparency, as has been argued in attempts to restore oyster banks in Chesapeake Bay 
(Cloern, 1982; Ulanowicz and Tuttle, 1992). A concern with this management option is 
the simultaneous production of fecal material by shellfish, a process that adds organic 
matter to sediments and depletes near-bottom oxygen (Roman and Tenore, 1984). 

3.5. Intercept contaminants 

To a certain extent, salt marsh sediments retain contaminants of many kinds, 
including heavy metals (Teal, 1986; Giblin et al., 1986), chlorinated hydrocarbons, 
and petroleum hydrocarbons (Reddy et al., 2002). Mangrove sediments also retain 
metals (Tam and Wong, 1999). In general, contaminants such as heavy metals have 
few discernible effects on wetland macrophytes or marsh fauna (Valiela et al., 1976). 
To the degree to which any contaminant from land is buried in marsh or mangrove 
sediments, these wetlands are preventing more widespread contamination of coastal 
waters. 
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3.6. Stabilize shorelines 

The roots and rhizomes of marsh plants add coherence to sediments, as do the dense 
roots of mangrove trees (Savage, 1972). By their very presence these macrophytes 
therefore consolidate otherwise loose sediments, and hence lower erosion of vegetated 
sediments. Storms often fail to disturb marsh sediments that are covered by grasses 
(Valiela et al., 1996). 

3. 7. Sources of forage and hay 

Marshes have long been used as grazing lands; one can see remnants of such 
practices all over the world, where salt marshes are still used as pastures. For example, 
visitors to most Scottish marshes will see grazing sheep on them. Cattle in coastal 
areas of Argentina can frequently be seen feeding on salt marsh hay, assimilating the 
forage as well as obtaining essential salts. Historically, use of salt marshes for grazing 
was also the case in Eastern North America; many colonial-era property deeds included 
a parcel of marshland for pasture purposes. Marshland was highly desirable because no 
worksome logging and uprooting were needed to create pastures. During more recent 
centuries in the east coast of North America, marsh grass was cut, dried over 
photogenic staddles (Fig. 6), and the dry matter used as marsh hay to feed livestock, 
and as horticultural mulch. Currently, there is a small market in developed countries 
for salt marsh hay, valuable because it does not sprout weeds when used as garden 
mulch. 

Fig. 6. 19th..:entury use of salt marsh grasses from the coast of Massachusetts. The Spartina and Distich/is 
grasses were cut, and piled on cedar supports-staddles-that held the hay above the high tide marks, and 
allowed the hay to dry before being used as winter feed for livestock.. Uses of marsh grass as livestock feed began 
as soon afier the initial European colonization of Nonh America. The illustration is "Hayfields: a clea.r day," 
painted about 1871 - 1880 by Martin Johnson Heade. Reproduced from Stebbins (1999). 
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3.8. WateJfowl refuges and migratory stop-over sites 

A large and diverse set of migratory birds depend on having adequate wetland areas 
as stop-over sites during migration and as wintering sites. Most of the population of 
European storks passes through or winters in the threatened Coto Doiiana wetland in 
Southern Spain, plus what is left of the Nile Delta wetlands. Preservation of these 
wetland habitats is therefore essential for this charismatic species, but there are many 
other waders, shorebirds, birds of prey, herons, egrets, and so on, that, though less well 
known to the public, also depend on such wetlands during migration for refueling and 
rest. 
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3.9. Intercept land-derived nutrients 

Wetlands intercept certain material transported from land and moving toward the 
sea. Note, for example, in Table 7 that nitrate is exported by a minority of coastal 
marshes: marshes tend to intercept rather than export nitrate, a major form of the 
nitrogen that limits growth of most coastal algae and plants in most coastal environ­
ments. Salt marshes may provide substantial interception of land-derived nitrogen 
because of their position between land and estuary, as well as because of their high 
rates of denitrification and burial of nitrogen (Valiela, 1983). One example of the 
potential importance of nitrate interception is given in Valiela and Cole (2002), who 
showed that the larger the area of salt marsh, or of mangrove swamp, the greater the 
production by seagrasses in adjoining meadows (Fig. ·7, top), and the smaller the loss 
of seagrass meadows that occurred as nitrogen loads increased (Fig. 7, bottom). 
Seagrass meadows are highly sensitive to increased nitrogen loads: interception of 
land-derived nitrogen in coastal wetlands can be interpreted as an important protective 
ecological "subsidy" furnished by salt marshes (and mangrove swamps) to adjoining 
coastal environments such as seagrass meadows. 

The items listed above are reasons we can muster to point out that human interests 
in coastal wetlands might include many important natural subsidies, rather than just 
cash crops or building sites. In some quarters it has become fashionable to develop 
valuations of ecological features, seeking equivalencies of natural services with 
currency. Two problems with this approach are, first, that in many cases, it is simply 
not realistic to make such conversions; in almost all cases, the methodology used in 
valuation does not withstand critical scrutiny, although space precludes an exegesis of 
the procedures here. Second, and far more important, is that any time a price is placed 
on anything, it is for sale, and the highest bidder is unlikely to share our priorities 
about conservation of wetlands in their natural state. 

There are some encouraging signs. Salt marsh restoration efforts of some magnitude 
are under way in a number of places in the U.S., including the Delaware River 
estuary, North Carolina, the Pacific Northwest, southern New England, Louisiana, and 
California (several chapters in Weinstein and Kreeger, 2000 and Craft et a!., 2003), 
and there are plans to restore the extensive areas of salt flats and lagoons in South 
San Francisco Bay to their original salt marsh status (L. Valiela, U.S. Environmental 
Protection Agency, personal communication, and http://www.southbayrestoration.org/ 
ProjecLDescription.htrnl). These are local efforts, but do portray a rising and perhaps 
widespread awareness on the part of public and political sectors about the need to at 
least slow the loss of coastal wetlands. 

In discussions about coastal wetland conservation, there is a certain hesitation to 
mention that many of us simply take great pleasure in wetlands and the organisms and 
settings they provide. One cannot-we are tempted to say ought not-put a price tag 
on this, but the aesthetic appreciation of wetlands by many people is a powerful force 
that should be harnessed. Arguments highlighting the aesthetic worth of wetlands, as 
well as the list of natural subsidies furnished by wetlands, need to be mustered, and 
repeated, in reaching out to the public and politicians. Success in raising awareness of 
wetland losses might ensure that we can continue to delight in wetlands, and that our 
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students and their students might have enough wetlands in which to continue doing 
excttmg research, such as adding to our incomplete knowledge about how wetland 
food webs are controlled, and lead to new directions by which salt marshes might 
further add to environmental science in general. 
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