Reprinted from Applied Optics, Vol. 20, page 1553, May 1, 1981
Copyright © 1981 by the Optical Society of America and reprinted by permission of the copyright owner.

Directional pedestal-free laser Doppler velocimetry
without frequency biasing. Part 1

Y. C. Agrawal and J. R. McCullough

The ‘spatial structure of the optical field on the detector of a laser Doppler velocimeter is examined. It is
shown that for sufficiently small scatterers, the optical field is a traveling wave of shape determined by-the
detector optics alone. The direction of travel of the optical field reflects that of the scattering particle.
Thus, the direction of motion of the particle is determined by temporal correlation of photocurrents from
two spatially offset detector arrays. The arrays also eliminate the Doppler pedestal as shown by Ogiwara
(1979). In this paper, the theory of the new method is described; experimental implementation will be de-

scribed in a complementary paper.

I. Introduction

The measurement of localized fluid velocity by the
laser Doppler method has developed along classical
heterodyne techniques. Yeh and Cummins! first ob-
tained the velocity by optically mixing a reference laser
beam with Doppler-shifted light scattered by particles
carried in the flow. A dual-scatter or dual-differential
Doppler method was proposed later, where the scat-
tering particle was illuminated by two beams derived
from the same laser and mixing occurred only between
the scattered light. This mode, due to superior sig-
nal/noise and ease of alignment in most practical sit-
uations, is the preferred mode, although in particle-
dense flows the coherent or reference mode of Yeh and
Cummins is recommended (Ref. 2). The laser Doppler
velocimeter (LDV) involves use of a single photosensor
as the optical mixer, detecting the full power of the
optical signal. The detected photoelectric current
varies as a Gaussian modulated sine function on a so-
called pedestal,® where the Gaussian modulation results
from the intensity distribution across the TEMgg laser
beams.

In either of the two modes described above, there
exists a 180° uncertainty in the direction of motion of
the scatterer. To resolve this directional ambiguity,
rotating radial gratings or Bragg cells must at present
be employed. These devices introduce a zero-velocity
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frequency offset in the linear frequency-to-velocity
relation (see, e.g., Ref. 3). A second problem as men-
tioned earlier is the Doppler pedestal. The Doppler
signal must be high-pass filtered and the pedestal re-
moved prior to processing on period counting elec-
tronics. In this paper we demonstrate that directional
information is contained in the spatial structure of the
optical signal at the detector surface, and that, by the
use of two offset differential linear arrays, the direction
of motion of the scatterer can be determined without
the need for frequency biasing devices. The diode ar-
rays, following the principle of Ogiwara,? also eliminate
the Doppler pedestal giving a zero-mean photocurrent.
Finally, the new method requires only one laser beam.
Two velocity components can be determined by the use
of two orthogonal arrays. The simultaneous elimina-
tion of beam splitting optics, directional ambiguity,
Doppler pedestal, and optical frequency shifting devices
leads to a considerable simplification of the LDV.

The principle of the new method can be simply ex-
plained as follows: treating the scattering particle as
a small or point light source, fringes are set up on the
detector surface through the diffraction of light by the
receiving optics. An example of such receiving optics
is shown in Fig. 1. We demonstrate below that when
these interference fringes are formed from light scat-
tered by a moving particle, they represent a traveling
wave (a fringe train) on the detector plane. It is further
shown that the direction of travel of the fringes reflects
the direction of motion of the scattering particle. Thus
the direction of motion of the interference fringes de-
termines the flow direction.

Il. Theory

To examine the spatial structure of the optical signal
we employ the Fourier formulation valid in the Fraun-
hofer diffraction approximation (see Ref. 5) in a manner
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Fig. 1. Schematic of the two-slit directional velocimeter. The in-

tensity distribution in the detector plane, E3E} is the same as that in

Young's experiment, centered at the geometrical image point of the
scatterer.

—t:z,(z)

similar to that of Rudd® and Ogiwara.* For reasons of
mathematical simplicity and subsequent physical in-
terpretation in the familiar context of the dual-Doppler
LDV, we use the geometry of Fig. 1. A single TEMqo
laser beam illuminates a particle in plane 1, which is the
front focal plane of lens Lo and the back focal plane of
lens L;. Lens L; converts the incident spherical wave
fronts of the scattered light to planar wave fronts which
are diffracted by two parallel symmetric slits in plane

2. The diffracted light is focused by lens Lo onto the’

detector plane 3, where Young’s fringes are formed.
When the scattering particle is a moving source, the
light transmitted by the two slits is differentially shifted
in frequency, forming moving interference fringes in
plane 3 in analogy with the motion of real fringes at the
probe volume in the dual-Doppler case when frequency
offset is employed. The direction of motion of the
fringes is obtained by the temporal correlation of the
photoelectric signal from two, spatially offset detectors
placed in plane 3.

If we express the complex amplitude of the laser beam
in plane 1 as E; = A(x), the optical field transmitted by
plane 1 can be expressed as

Ei = A1 - Gx = D), oy

where G(x) represents the blocking function of the
scatterer and | = v - nt represents the displacement of
the scatterer normal to the optical axis from an arbitrary
reference. The incident field on plane 2 is then the
Fourier transform of Ey,, or

Eo=F{A(x) {1 = G(x — D]} (2)
= [a(y) —aly) xgly = D), (3)

where we have adopted a convention that functions
represented by lowercase and uppercase letters, e.g.,
a(x) and A(x) are mutual Fourier transforms. The
asterisk represents a convolution. In the following
. analysis, we shall disregard constant multipliers,
lumping them in a series C;.

The field transmitted by the double slits in plane 2
can be written as

Eq = Cila(y) —aly) xgly — D] - h(y), (4)

where h(y) represents the pupil function of the slits
such that
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~A-fSys<—-A+d
h(y)=1 y ,
A—-6<y=<A+4,

= 0 otherwise. (5)

This represents two slits 2A apart on center and 20
wide.
The field in plane 3 is the transform of Eq. (4), i.e.,

E3=CeFlaly) —aly) »gly — Dl + H(2),
or

= Cy [A(z) — A(2) Glz + If2/fD)] » H(2), (6)

the factor fo/f; = —M is the magnification of lens system
L and L, and can be obtained following the transforms
in an orderly way (see Ref. 7). Next we make the rea-
sonable assumption that A > w, where w represents the
diameter of the laser beam in plane 2, so that no part of
the direct beam is transmitted and have, from Eq.

(6),
Es=—-C3[A(2)G(z — MD)] =« H(z). (7)
Writing Eq. (7) explicitly,

Ey=—Cs f_m A)NG(z' = Ml) - H(z — 2')dz". ®)

If G(z) is a narrow.function, i.e., G(z) = 1 for |z | <eand
= ( otherwise, where ¢ is small in comparison with the
spatial period of H(z), Eq. (8) can be reduced to

E3(z) = C3A(DH(z — M1). (9

Equation (9) is central to the scheme for obtaining the
direction of motion of the scatterer. It isseen from Eq.
(9) that the spatial distribution of the electric field de-
pends only on the detection optics and is simply the
diffracted field of the receiver aperture, centered at the
geometric image of the scatterer, with an amplitude
proportional to that seen by the scatterer in plane 1.
Since [ = v+ nt, it is also implied that regardless of the
shape of H(z), provided that H(z) is a slowly varying
function compared with G(z), the electric field forms
a traveling wave at plane 3. The direction of travel is
indicated by the sign of (v - n).

It is thus possible to choose one of a large family of
functions H(z) [hence h(y)], which must only satisfy the
one criterion stated above, and which result in a trav-
eling wave electric field at the detector surface.

The function h(y) we chose for this illustrative ex-
ample was the double slit for which

H(z) = %2 sin(kdz/f2) sin(kAz/f2), (10)
Rz
where k = 27/\ is the wave number. Substituting in
Eq. (9),
All) . kRAGEz—-Ml) | Ré(z - M)
4 sin s .
k(z — M) f2 f2

The implied constraint on the width of the function
G (x) now becomes

Ey(z)=C

(11)

e << fi/kA and e < f1/R6, (12)

making the sine functions in Eq. (11) slowly varying
compared with G(z — MI).



-

The intensity distribution at the detector plane is,
from Eq. (11),

2 kS kA
A ke (z = Ml) sin2 — (z — M),
(z=-MD2 |y fa

I3(z) = E3E5 = C5
(13)

Using a well-known trigonometric identity, Eq. (13)
reduces to

2 R 1)
I3(z) = Cs A - cosHA+ )(z—Ml)
4z — MIy? fs
—cosHAZ Ml)r, (14)
A% 2R(A + 6)
Is(2) = Co—— 1 = Y cos = (z ~ MI
a(2) = Ce G- M) 1 -5 cos i ( )
Yeos LT
2
—cos%(z—Ml)—cosg%(z—Ml)] . (15)
fo f2

Equation (15) represents the optical intensity distri-
bution on the detector plane. The first term, unity, in
the square bracket corresponds to a nearly uniform il-
lumination across the detector surface. This term de-
scribes the pedestal and is of no further interest. Re-
calling now that [ = v+ nt, the second, third, and fourth
terms represent spatially traveling waves of center
frequency

fo = 2v-nA/N, (16)

and a bandwidth
B =2v-n-8/\f1. a7

These terms express the beating between light trans-
mitted by the two slits and hence are the signal terms.
The fifth term represents the self-beating of light
transmitted by a single slit. We recognize Eq. (16) to
be identical with the Doppler frequency in the dual
Doppler mode, although, due to the Fraunhofer ap-
proximation of this model, the center frequency [eq.
(16)] varies as 2v » nA/Af; rather than the exact form

2venA

W~

The spatial component in Eq. (15), i.e., (z — Ml).

represents left or right (up or down) traveling waves
depending on the sign of { = v+ nt. It is this relation
between the direction of motion of the scatterer and the
direction of motion of the fringe train which is exploited
to obtain the direction of flow without frequency bias-
ing. It is of historical interest to note that previous
Fourier formulations such as that of Rudd® precluded
the examination of spatial structure in the optical field
at the detector surface since a single photodetector was
used. On the other hand, Ogiwara? used a linear dif-
ferential diode array to generate a periodic spatial re-
sponse function of the detector but only for the removal
of the Doppler pedestal. It is straightforward to show
Ogiwara’s result from Eq. (15). If the spatial respon-
sivity of the detector is periodic with spatial frequency
equal to K = 2k A/f5, the photocurrent can be expressed
as

1(t) = Cs f‘” AXD[H(z = MD|? ¥ B, cos(nKz + ¢n)dz,

n=1

(18)

where w = 47 (v * n)A/Nf1, and A > § is assumed, and
the series 25-; B, cos(nKz + ¢,) is the Fourier repre-
sentation of detector responsivity. Thus only spatial
frequencies of nK /2w are detected. Lower frequencies
represented by terms 1 and 5 in Eq. (15) produce no
photocurrent, and the pure zero-mean Doppler current
is obtained.

lii. Determination of Direction

The determination of the flow direction is achieved
if the direction of travel of the fringe train on the de-
tector planeis obtained. This amounts to determining
the algebraic sign of v - n. To accomplish this two
spatially separated samples of the fringe train are re-
quired, and a correlation procedure is employed. If the
two diode detectors are Y fringe apart, the photocur-
rents resulting from the two diodes will be £%; Doppler
period apart. One needs only to compare the two cor-
relations to obtain the direction of motion. The di-
rection is positive or negative according to ¢(w/2) —
¢(—7/2) = 0, where the function ¢(7) is ¢(7) = (I,(t —
7)o(t)). '

In this work, we use two linear differential diode ar-
rays similar to that of Ogiwara. The two photocurrents
are then pedestal-removed zero-mean processes. The
currents can be written, from Eq. (18), as

11(t) = C2A%() f_m |H(z — MD)|2B; cos(Kz + ¢1)dz,

I5(t) = C7A2(]) fm |H(z — MD)|2B; cos(Kz + ¢ + 7/2)dz.

(19)

The direction of flow is obtained from running two de-
layed correlations ¢(+w/2) and differencing as ex-
plained. ‘

The choice of differential diode arrays is indicated by
yet another consideration: Signal strength. To receive
the full power of the optical signal, the entire fringe train

~ must be detected at all times. Since noise due to pho-

todetectors increases as the square root of number of
detectors, whereas the signal strength increases linearly,
a net gain in SNR is realized.

IV. Effect of Noise on Direction Determination

Uncertainty in the determination of direction can
result from contributions to the correlation function
¢(7) from the shot noise of the optical signal. It is
straightforward to show (Ref. 8) that the autocorrelation
function of bandlimited white noise is expressed as
¢, (1) = 02 sinc(2nf,, - 7), where &2 is the total noise
power, and f,,, is the upper frequency limit. Thus, the
statistical uncertainty in ¢(7) at 7 = Yf. is the auto-
correlation function of the noise itself given by
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Fig. 2. Schematic of directional LDV with large aperture. The use
of a wider aperture improves SNR. A square aperture allows two-axis
velocity measurement.

$n (21}) = g2 sinc(gézl) .

If £ is the noise-to-signal power ratio per unit band-
width /

¢n(7) . T fm) . 7rfm

() &fm sinc 5 fz») or Esm( o, ) , (20)
which indicates the benefit of a bandwidth approxi-
mately twice the Doppler frequency, and estimates an
upperbound on error if the noise power per unit band-
width is known. This noise power is el /n, where e is the
electronic charge, I is the mean ¢urrent, and 7 is the
detector quantum efficiency.

..V. Discussion

The existence of spatial structure in the detector
plane thus makes possible the determination of the di-
rection of motion and removal of pedestal. The only
restriction in the model presented is that the particle
size € be smaller than Af{/A. This quantity will be
recognized by workers familiar with dual LDVs as the
spacing of fringes at the measurement volume (in this
case virtual fringes replace the real fringes of a dual-
Doppler LDV). Thus, the requirement is that the
scatterer be smaller than the virtual fringe spacing.

The double slit example chosen here is one of the class
of masks which are allowed by such a method. In fact,
one obviously reduces signal strength by the use of slits,
and other masking functions k(y) should be considered.
A particularly attractive one is shown in Fig. 2:

= ( otherwise.

h(y) =1 ~A<y <A

Thus a rectangular wide slit is suggested. The particle
size restriction can be seen to remain ¢ << Af1/A. As
before, the spatial period required for the detector array
is K = 2kA/fs. H(z) in this case is the sinc¢ function.
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Finally, we observe that violation of the condition on
the size of the scatterer only alters the shape of the op-
tical field distribution; the traveling wave nature is not
destroyed. Thus a broader application of this principle
in removing Doppler directional ambiguity appears
possible. Experimental implementation will be de-
scribed in a complementary paper.

V. Summary

It is demonstrated that the spatial distribution of the
optical field at the detector plane of an LDV represents
a traveling wave. If the scattering center is sufficiently
small, i.e., equivalently smaller than the virtual fringe
spacing of the detector optics at the measurement plane,
the optical field at the detector is simply the Fourier
transform of the detector pupil function. The direction
of the traveling wave is determined by sampling at two
points and differencing two delayed correlations. The
use of two differential diode arrays simultaneously

eliminates the pedestal.
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