K.O. Emery & D.G. Aubrey
Relative Sea Level Change
from the Tide Gauge Records
of Western North America
RELATIVE SEA LEVEL CHANGE FROM TIDE GAUGE RECORDS OF WESTERN NORTH AMERICA

K. O. Emery and D. G. Aubrey

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Abstract. Negligible success of investigators in relating tide gauge records of the west coast of North America to eustatic changes of sea level is the result of tectonic movements of the land reference level beneath the tide gauges. The vertical tectonic movements are caused by horizontal movements of oceanic crustal plates. Sinking of 12 mm/yr at Cordova, Alaska, is associated with intense subduction at the east end of the Aleutian Trench; rising by 6 mm/yr at Skagway may be caused by resistance to lateral crustal movement toward the filled trench; rising of 1 mm/yr in southern Alaska (uplift above slow subduction); little vertical movement between Sitka and Mendocino Fracture Zone (translation and slow subduction including fracture zones and thick sediments); sinking of 1 mm/yr west of the San Andreas fault (translation); and sinking of 2 mm/yr along southwestern Mexico (effects of cooling of late rifted crust and only diagonal subduction). Superimposed on this tectonism due to plate motion is broad scale isostatic adjustment (both rise and fall) resulting from deglaciation. Removal of rigid plate motion deltas helps resolve subplate tectonic processes. Higher-frequency (0.05-0.5 cpy) sea level changes as well as large-scale pressure fluctuations and wind stress events are associated with El Niño/Southern Oscillation. An apparent increase in relative sea level rise near 1935, also observed in other regions, remains to be explained.

Introduction

Tide gauges originally were established to indicate times of flooding and ebbing tides to aid sailing ships to enter and leave harbors, but later their records yielded information about longer-term changes of relative sea level. Hourly averages of tide height throughout an entire year showed year-to-year shifts ascribable only to general change in level of the ocean surface or of the land foundation beneath the tide gauge platform. Early compilation by Warmer [1927] of these relative shifts recorded on U.S. gauges was continued by others at the U.S. Coast and Geodetic Survey. Hicks and Shofnos [1965] and Hicks and Crosby [1974] showed that at most U.S. stations the average annual shift was between 2.0 mm rise and 1.0 mm fall of relative sea level but that several Alaskan stations exhibited average falls as much as 13.5 mm/yr. Slopes of regression lines, standard errors, variability, and smoothed curves for entire durations of station record and for the common time span between 1942 and 1972 were listed, but there was little discussion about causes of the changes. Comparison of records from different sites was complicated by differences in time spans of record at the stations and by effects of exceptional changes at 5- to 20-year intervals caused by oceanic and atmospheric factors. Other workers also have plotted tide gauge records for U.S. stations and for worldwide ones [e.g., Gornitz et al., 1982; Barnett, 1983a], but almost invariably with the stated or implied assumption that the records reveal eustatic changes of sea level and that the main analytical requirement was to balance the poor distribution pattern of the tide gauges. Uplift of crusts of Scandinavia and Canada after melt of their glacial loads is well known from the presence of raised and tilted marine and lake terraces, but less well recognized are tide gauge indicators of vertical land displacements caused by lateral movements of crustal plates. In an effort to estimate the relative roles of tectonic movements of land and eustatic rise of sea level caused by return of glacial meltwater, Emery [1980] made regression analyses for 247 tide gauge stations of the world, finding a range of relative sea level change between at least -13 and -13 mm/yr. Such a wide range means that tectonic warps at the tide gauge sites have paramount importance for the general trends. After elimination of tide gauge stations at sites with a rise of land, the remaining stations recorded a median annual rise of sea level (or a fall of land level) of about 3.0 mm/yr. This change involves tectonic, eustatic, and periodic meteorological and oceanographic factors. The first step in evaluating the relative roles of these factors is to make detailed analyses of changes of level in regions that have numerous well-tended tide gauges. In addition, a need was evident to apply statistical methods beyond simple linear regressions to avoid biases and errors caused by periodic variations in water level, gaps in records, differences in time spans of records, and uneven distribution of stations along the coasts of the world.

In a recent review, Cartwright et al. [1985] discussed aspects of changes in relative mean sea level. Among the factors discussed was global geodynamics, with a strong emphasis on glacioeustatic rebound at the expense of plate tectonics and related issues. Although Cartwright et al. [1985] correctly identify the importance of land motion in interpreting tide gauge records, tectonism is not addressed leaving a large gap that the present study is designed to fill.

A first attempt at this statistical approach [Aubrey and Emery, 1983] was for the Pacific and Atlantic coasts of the United States using mean annual sea levels through 1979 supplied by the National Oceanic and Atmospheric Administration. Results for the Atlantic coast indicated the presence of three coastal sections having

Copyright 1986 by the American Geophysical Union.

Paper number 585833.

0148-0227/86/005B-5833$05.00
different trends of sea level changes, probably
crustal blocks warped by tectonic movements and
differently affected by glacial rebounds. Stations of the
Pacific coast exhibited considerable irregularity that was considered
due to movements of blocks, but interpretation
was limited by the fewer stations and the probable smaller size of crustal blocks along the
Pacific than the Atlantic coast. This article is a return to the Pacific coast problems
after having gained experience in evaluating
tectonic controls over changes in relative sea
level in other parts of the world and after incorporating additional records especially from
stations along the west coasts
of Canada and Mexico.

Statistical Analyses

Mean annual sea levels at Pacific coast United
States, Canadian, and Mexican tide gauge stations
were provided by D. Pugh of the Permanent Service
for Mean Sea Level at Merseyside, England.
Forty-five Pacific coastal stations in the three
countries had records of 13 or more years duration,
but only 38 were within the geological provinces of
Figure 1b and two of these were eliminated for
regression because their Student t confidence
limits (±1 mm/yr) for least squares regression
were below 0.80. The remaining 36 stations
(Table 1, Figure 1a) lie along the mainland
between latitudes 19º30' and 60º33'N. Complica-
tions due to sinking of land at Long Beach prior
to utilization of the large oil field there were
avoided by eliminating the part of the record
before 1963. Similarly, a 14-m uplift along a
fault at Yakutat in 1899 [Tarr and Martin, 1912]
ocurred prior to the tide gauge record there.

Regression analyses showed that rise in mean
annual relative sea levels ranges from +5.2 to
-3.2 mm/yr, or (as in Figure 2) the change in
land level ranges from -5.2 to +3.2 mm/yr.
Between Manzanillo and Sitka a best fit line
through the points that show average annual
change approximates 0.75 mm rise/yr./1000 km
nortwestward along the coast, but there are
many irregularities along the profile
(Figure 2). Between Sitka and Skagway the rise
of land level change is much steeper, reaching
17.6 mm/yr by regression, and beyond Skagway to
Cordova it falls to -12.2 mm/yr.

Temporal eigenanalysis (details of methodology
given by Aubrey and Emery [1986a] for 34 of the
36 stations showed that 79% of the variation in
mean annual levels is in the first two functions
(Figure 2, Table 2). The first function exhibits
a change of slope from nearly horizontal prior
to 1930-1935 (almost the same date as observed
for records of the U.S. East Coast [Braats and
Aubrey, 1986], to a slope of -0.005/yr for the
time span after 1935. The first and second
spatial eigenfunctions, plotted at the bottom of
Figure 2, were multiplied by the slope of their
respective temporal functions and summed to
obtain synthetic mean annual relative sea level
change (expressed as land level change in Figure
2). Note that the results by eigenanalysis are
parallel with those from regression analysis with
the exception that the highest rates are muted
by eigenanalysis (see also comparison in Figure
2c).

Annual changes of relative sea level are far
from uniform, as revealed by the plots of Figure
4 made for 10 of the longer-term tide gauge
stations of Figure 1. The changes appear to be
cyclical, with higher sea levels corresponding
with dates of El Ninos that appear at intervals
averaging about 6-7 years. Monthly mean relative
sea levels (Figure 5) depict similar results but
with more detail because of reduced averaging.
Many El Nino/Southern Oscillations (ENSOs)
are clearly identified in these monthly anomalies,
although the El Ninos of 1929 and 1939 exhibit
weak sea level signatures.

These examples illustrate the presence of
variations in relative sea levels (or land
levels) that range from secular, or long-term,
one to others that are quasi-periodic, or short
term. Low-frequency and high-frequency varia-
tions are discussed separately in the following
sections as befitting their very different
causes.

Low-Frequency Geologic Factors

Average annual changes of relative sea level
along the Pacific mainland coast are too large
and too varied to be accounted for by errors in
tide gauge measurements of simple eustatic rise
caused by returned meltwater and by changing
ocean temperature. Most obvious are the sharp
changes at Juneau, Skagway, and Yakutat compared
with change in the opposite direction at Cordova
(Figure 2). Significant also are less extreme
changes between Sitka and Manzanillo. These
smaller changes at first impression to be erratic,
but their general trend is that of a
general low gradient or even of several nearly
horizontal levels with a step between San
Francisco and Crescent City. Such gradients in
relative sea level change along the coast suggest
dominant control by vertical movement of the land
through tectonism or isostatic adjustment rather
than by shift of sea level alone. A similar
conclusion favored large systematic changes of
land level in Japan, which Aubrey and Emery
[1986a] ascribes to effects of subduction of the
Pacific and Philippine oceanic plates beneath
the Japanese continental plate.

Examination of plate movements along the
Pacific mainland coast of North America should
clarify whether they may provide a rational
explanation for the changes of relative sea
(land) level along that coast. Much of the
pertinent information for these plate movements
was described by Atwater [1970], who built upon
previous work derived largely from magnetic
reversal patterns measured aboard surface ships
and confirmed by cores from the Deep Sea Drilling
Project. In brief summary, sometime before Late
Jurassic a north-south spreading belt began to
form the present Pacific Ocean, possibly by
rifting of a former continent (named Pacifica by
Nur and Ben-Avraham [1977]. Oceanic crust
emplaced along this belt spread laterally east-
ward and westward from the original position of
the belt. At about the same time another north-
south spreading belt began as the Mid-Atlantic
Ridge in the Atlantic Ocean, accompanying a west-
ward movement of North America. As a result, the
North American plate of continental crust over-
rode the earliest Pacific oceanic crust at the
<table>
<thead>
<tr>
<th>Station Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Begin Year</th>
<th>End Year</th>
<th>Total Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States (Aleutian Island)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massacre Bay+</td>
<td>52°50'N</td>
<td>173°11'W</td>
<td>1943</td>
<td>1966</td>
<td>24</td>
</tr>
<tr>
<td>Sweeper Cove+</td>
<td>51°51'N</td>
<td>176°39'W</td>
<td>1943</td>
<td>1975</td>
<td>33</td>
</tr>
<tr>
<td>Unalaska+</td>
<td>53°53'N</td>
<td>166°32'W</td>
<td>1955</td>
<td>1975</td>
<td>21</td>
</tr>
<tr>
<td>United States (Alaska)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordova*</td>
<td>60°33'N</td>
<td>145°46'W</td>
<td>1964</td>
<td>1983</td>
<td>19</td>
</tr>
<tr>
<td>Yakutat (YA)</td>
<td>59°33'N</td>
<td>139°44'W</td>
<td>1940</td>
<td>1983</td>
<td>44</td>
</tr>
<tr>
<td>Sitka</td>
<td>57°30'N</td>
<td>135°20'W</td>
<td>1938</td>
<td>1983</td>
<td>46</td>
</tr>
<tr>
<td>Skagway</td>
<td>59°27'N</td>
<td>135°19'W</td>
<td>1944</td>
<td>1973</td>
<td>31</td>
</tr>
<tr>
<td>Juneau (JU)</td>
<td>58°18'N</td>
<td>134°25'W</td>
<td>1936</td>
<td>1983</td>
<td>45</td>
</tr>
<tr>
<td>Ketchikan (KE)</td>
<td>55°20'N</td>
<td>131°38'W</td>
<td>1919</td>
<td>1975</td>
<td>61</td>
</tr>
<tr>
<td>Canada (Pacific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prince Rupert</td>
<td>54°19'N</td>
<td>130°20'W</td>
<td>1933</td>
<td>1977</td>
<td>44</td>
</tr>
<tr>
<td>Queen Charlotte</td>
<td>36°15'N</td>
<td>122°40'W</td>
<td>1957</td>
<td>1977</td>
<td>43</td>
</tr>
<tr>
<td>Bella Bella</td>
<td>52°10'N</td>
<td>128°30'W</td>
<td>1962</td>
<td>1977</td>
<td>16</td>
</tr>
<tr>
<td>Port Hardy*</td>
<td>50°43'N</td>
<td>127°39'W</td>
<td>1965</td>
<td>1977</td>
<td>12</td>
</tr>
<tr>
<td>Alert Bay</td>
<td>50°35'N</td>
<td>126°57'W</td>
<td>1946</td>
<td>1977</td>
<td>30</td>
</tr>
<tr>
<td>Point Atkinson</td>
<td>49°20'N</td>
<td>123°15'W</td>
<td>1914</td>
<td>1977</td>
<td>44</td>
</tr>
<tr>
<td>Vancouver</td>
<td>49°17'N</td>
<td>123°70'W</td>
<td>1910</td>
<td>1977</td>
<td>51</td>
</tr>
<tr>
<td>Fulford Harbour</td>
<td>48°46'N</td>
<td>123°27'W</td>
<td>1960</td>
<td>1977</td>
<td>18</td>
</tr>
<tr>
<td>Victoria (VI)</td>
<td>48°25'N</td>
<td>123°22'W</td>
<td>1909</td>
<td>1977</td>
<td>69</td>
</tr>
<tr>
<td>Tofino</td>
<td>49°90'N</td>
<td>125°55'W</td>
<td>1962</td>
<td>1977</td>
<td>16</td>
</tr>
<tr>
<td>United States (Pacific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neah Bay</td>
<td>48°22'N</td>
<td>124°37'W</td>
<td>1934</td>
<td>1983</td>
<td>50</td>
</tr>
<tr>
<td>Friday Harbor</td>
<td>48°33'N</td>
<td>123°00'W</td>
<td>1934</td>
<td>1983</td>
<td>50</td>
</tr>
<tr>
<td>Seattle (SE)</td>
<td>47°36'N</td>
<td>122°20'W</td>
<td>1899</td>
<td>1983</td>
<td>85</td>
</tr>
<tr>
<td>Astoria</td>
<td>46°13'N</td>
<td>123°46'W</td>
<td>1925</td>
<td>1983</td>
<td>59</td>
</tr>
<tr>
<td>South Beach*</td>
<td>44°38'N</td>
<td>124°30'W</td>
<td>1967</td>
<td>1983</td>
<td>17</td>
</tr>
<tr>
<td>Crescent City (CC)</td>
<td>41°45'N</td>
<td>124°12'W</td>
<td>1933</td>
<td>1983</td>
<td>52</td>
</tr>
<tr>
<td>San Francisco (SF)</td>
<td>37°48'N</td>
<td>122°28'W</td>
<td>1905</td>
<td>1983</td>
<td>79</td>
</tr>
<tr>
<td>Alameda</td>
<td>37°46'N</td>
<td>122°18'W</td>
<td>1939</td>
<td>1983</td>
<td>45</td>
</tr>
<tr>
<td>Avila</td>
<td>35°10'N</td>
<td>120°44'W</td>
<td>1945</td>
<td>1969</td>
<td>26</td>
</tr>
<tr>
<td>Rincon Island*</td>
<td>34°21'N</td>
<td>119°26'W</td>
<td>1962</td>
<td>1983</td>
<td>21</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>34°10'N</td>
<td>118°30'W</td>
<td>1933</td>
<td>1983</td>
<td>43</td>
</tr>
<tr>
<td>Los Angeles (LA)</td>
<td>33°43'N</td>
<td>118°16'W</td>
<td>1923</td>
<td>1983</td>
<td>62</td>
</tr>
<tr>
<td>Long Beach</td>
<td>33°47'N</td>
<td>118°15'W</td>
<td>1963</td>
<td>1983</td>
<td>21</td>
</tr>
<tr>
<td>Newport Bay</td>
<td>33°36'N</td>
<td>117°53'W</td>
<td>1955</td>
<td>1983</td>
<td>29</td>
</tr>
<tr>
<td>La Jolla (LJ)</td>
<td>32°52'N</td>
<td>117°15'W</td>
<td>1924</td>
<td>1983</td>
<td>59</td>
</tr>
<tr>
<td>San Diego</td>
<td>32°43'N</td>
<td>117°10'W</td>
<td>1906</td>
<td>1983</td>
<td>78</td>
</tr>
<tr>
<td>Mexico (Pacific)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensenada</td>
<td>31°51'N</td>
<td>116°38'W</td>
<td>1956</td>
<td>1982</td>
<td>25</td>
</tr>
<tr>
<td>La Paz*</td>
<td>24°10'N</td>
<td>110°21'W</td>
<td>1952</td>
<td>1966</td>
<td>15</td>
</tr>
<tr>
<td>Guaymas*</td>
<td>27°55'N</td>
<td>110°54'W</td>
<td>1952</td>
<td>1965</td>
<td>14</td>
</tr>
<tr>
<td>Manzanillo (MA)</td>
<td>19°30'N</td>
<td>104°20'W</td>
<td>1956</td>
<td>1982</td>
<td>26</td>
</tr>
<tr>
<td>Salina Cruz+</td>
<td>16°10</td>
<td>95°12</td>
<td>1952</td>
<td>1979</td>
<td>27</td>
</tr>
</tbody>
</table>

* Not included in eigenanalysis.
+ Not included in regression analysis.

The eastern side of the Pacific spreading belt until by now only fragments of that crust remain. In fact, part of the spreading belt itself has been overridden so that the East Pacific Rise has been consumed between the head of the Gulf of California and Cape Mendocino. It reappears at the Mendocino Fracture Zone as the Juan de Fuca Ridge, which in turn has been overridden by the North American plate in western Canada north of Prince Rupert (Figure 1b).

Most of the oceanic crust west of the spreading belt (the Pacific plate, Figure 6b) is intact, with a maximum width of about 9000 km that was formed during about 160 m.y. of seafloor spreading (an average rate of 5.6 cm/yr). Most oceanic crust east of the spreading belt (originally the same width as the present crust west of the spreading belt if spreading was symmetrical as is typical) has been lost by subduction beneath the North American and South American plates. Widest of the remaining fragments is the Nazca plate off South America.
Fig. 1. Geographical patterns. (a) Positions of tide gauge stations (circles) and their projections to a line that trends N20°W for subsequent plotting of data. (b) Major fracture zones, spreading belts, San Andreas fault system, and ages of oceanic crust [King, 1969; Atwater, 1970; Pitman et al., 1974; Heezen and Fornari, 1975]. (c) Relation of relative land level change computed from regression analysis and eigenanalysis. The straight line represents the relation if results from the two methods had been identical.

south of the equator; its oldest remaining part next to the continent is early Eocene. The next fragment (Cocos plate) extends from the secondary east-west Galapagos spreading belt northward to latitude 18°N; its oldest crust is again early Eocene. A northward extension, the Rivera plate, occupies the eastern side of the Gulf of California (Figures 1b and 6a) but contains no oceanic crust older than late Miocene [Karig et al., 1978]. Next to the north was the former Farallon plate [Figure 6b] that extended to near the Mendocino Fracture Zone but became entirely consumed by subduction about 10 m.y. ago. The last remaining part of the original oceanic crust east of the main spreading belt is the Juan de Fuca Plate (Figures 6a and 6b), whose oldest remaining part is Miocene and whose northern limit is near Prince Rupert (Figure 1b). The part of this original plate north of that limit and all of a former Kula plate [Figure 6b (Grow and Atwater, 1970)] northwest of it have been lost to subduction beneath the North American plate to the northeast and along the Aleutian Trench to the northwest [Ben-Avraham and Cooper, 1981].

The subduction beneath the North American plate of an area of oceanic crust nearly equal to that of the present North Pacific Ocean influenced the continent in many ways [Maxwell, 1974] including vertical movements of the continental margin. That these movements persist to the present is reasonable in view of the many earthquakes along the coasts of this region and by an average rate of oceanic crust emplaced during the Neogene and Quaternary equaling 4.1 cm/yr, as estimated from the average width and 22.5 m.y. duration of emplacement of oceanic crust of that time span (mapped by Heezen and Fornari [1975]).

Comparison of vertical movements of land shown by the regression and eigenanalysis profiles of Figure 2 with plate movements inferred from map patterns of Figures 1b and 6a is instructive. The largest fall of land level is at Cordova, which is just north of the eastern extension of the Aleutian Trench, the present main belt of subduction of the northern Pacific plate. Less
Subduction occurs at the eastern end of the Aleutian Trench [Von Huene, 1972] than farther west; nevertheless, oceanic sediments at the east are thick, the crust is depressed, and deformation may have begun only during the Pliocene. The relationship accords with the Hilde and Uyeda [1983] observation that the depth of trenches is a function of the age and rate of plate subduction especially in regions having little sediment supply. The considerable uplift of land at Yakutat, Skagway, and Juneau is in a region of intense faulting [King, 1969] south of the Aleutian Trench extension, and perhaps it is partly due to resistance to underthrusting into the eastern Aleutian Trench of the Pacific plate and its adjacent continental crust (Figure 6a).

Between Sitka and the Mendocino Fracture Zone (the latter projecting eastward to the coast between Crescent City and San Francisco) the land level changes little (mostly between +1 and -1 mm/yr), perhaps in accordance with underthrusting of the Juan de Fuca plate (east of the spreading belt) beneath the North American plate. This

TABLE 2a. Percent of Variance in Sea Levels Explained by Dominant Eigenfunctions

<table>
<thead>
<tr>
<th>Eigenfunction</th>
<th>Percent of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.2</td>
</tr>
<tr>
<td>2</td>
<td>10.8</td>
</tr>
<tr>
<td>3</td>
<td>7.2</td>
</tr>
<tr>
<td>4</td>
<td>3.9</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>6</td>
<td>1.8</td>
</tr>
<tr>
<td>Total</td>
<td>93.8</td>
</tr>
</tbody>
</table>

TABLE 2b. Percent of Variance in Sea Levels Explained by Dominant Eigenfunctions

<table>
<thead>
<tr>
<th>Eigenfunction</th>
<th>Percent of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68.0</td>
</tr>
<tr>
<td>2</td>
<td>13.7</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>4.1</td>
</tr>
<tr>
<td>5</td>
<td>1.9</td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
</tr>
<tr>
<td>Total</td>
<td>95.3</td>
</tr>
</tbody>
</table>
underthrusting probably is most important south of Prince Rupert east of the spreading belt, but between Sitka and Prince Rupert it must be reduced by left-lateral strike-slip movement along a complex system of faults (Figure 1b [King, 1969]). Irregularities may be associated with the underthrusting of fracture zones, especially eastward extensions of the Sila and Sedna ones that appear to intersect the coast in a section having many tide gauge stations.

Farther south, between the Mendocino Fracture Zone and the Gulf of California, land levels are falling in accordance with the fact that underthrusting of oceanic crust ceased there when the spreading belt became overridden by the North American plate about 10 m.y. ago; much but not all subsequent movement was taken up by left-lateral strike-slip motion along the San Andreas fault [Atwater, 1970]. The one part of this coastal unit that exhibits uplift is the Transverse Ranges (Figure 2, top; the San Gabriel and San Bernardino mountains), which may be bounded by the eastward extension of the Murray Fracture Zone. They also have long been known from repeated precise leveling to be undergoing uplift of about 5 mm/yr [Gilluly, 1949], probably a result of oblique compression at the bend of the San Andreas fault (Figure 6a [Crowell, 1968]). Last, at the south is the segment between the head of the Gulf of California and latitude 15°S (the southern limit of Figures 1 and 6). Three tide gauge stations

are present, and all denote a sinking land level on both sides of the gulf (Figure 6a), which may indicate that uplift caused by subduction there is less important than sinking produced by crustal cooling [Pitman, 1978] of the recently (3-5.5 m.y. ago [Curray et al., 1982]) rifted continental crust.

Recent work has focussed on identification of suspect terranes [see Coney et al., 1980], indicating that much of the North American continent consists of allochthonous blocks.
each of these sectors, relative sea level was modeled as

$$\eta'(x,t) = a_0 + a_1 x + (a_2 + a_3 x)t$$

where $\eta'(x,t)$ is plate motion at point x for time t, while a_0, a_1, a_2, and a_3 are constants for each plate. Tide gauge data from each of the three sectors were modeled by least squares. The resulting rigid plate model was then subtracted from the original relative sea level data, $\eta(x,t)$, to yield a residual series:

$$\eta^*(x,t) = \eta(x,t) - \eta'(x,t)$$

Regression results of the residual series are similar to patterns of the original series, lacking only the low wave number component (Figure 7). Spatial patterns of relative land movement remain essentially unchanged from those of Figure 2.

Eigenanalysis was performed on the residual series, as it had been for the exploratory investigation of original relative sea level series. Relative sea level histories reconstructed from eigenanalysis of residuals (Figure 7) are similar to analogous results from the original series. The rigid plate approximation does not reduce the spatial variability of relative sea levels. Similarly, temporal eigenfunctions (Figure 8) from the residual series are remarkably similar to those of the original time series (Figure 3).

Residual relative sea levels exhibit considerable spatial variability. Although some of this is a result of statistical uncertainties, part may reflect tectonic processes at a subplate scale. E. Uchupi and D. G. Aubrey (unpublished manuscript, 1986) related allochthonous terranes to sea level trends, identifying strong correlations between subplate scale tectonism and relative sea level records. Their results reinforce the strong control exerted by tectonism on tide gauge records.

Vertical crustal movement resulting from isostatic adjustment to deglaciation is superimposed on vertical changes due to plate motion (Figure 7). Peltier [1986] has modeled deglaciation of North America during the past 18,000 years. His results indicate a pattern of relative land movement markedly different from the tide gauge results (Figures 2 and 7). West of Skagway, isostatic adjustment leads to sinking of land. Between Skagway and Astoria, land is rising at rates up to 1.6 mm/yr, while between Astoria and Avila, land is sinking at rates reaching 0.8 mm/yr. South of Avila, isostatic response is negligible (less than 0.4 mm/yr). Removal of this broad scale isostatic adjustment neither makes tide gauge results more uniform nor alters interpretation of plate influence. Although contributing to relative sea level changes, isostatic processes are masked by tectonism associated with relative plate motions.

Eustatic rise caused by return of meltwater and change in water temperature is another low-frequency factor that can influence relative sea levels. This factor certainly was important after the time of maximum glaciation until about

Fig. 5. Same as Figure 4 except data are triple 6-month running mean averages of monthly relative sea level data (mean monthly values have been removed to eliminate seasonal effects). This averaging is identical to that of Quinn et al. [1978] and is discussed by Aubrey and Emery [1986a].

These subplate blocks may be reflected in relative sea level behavior, as suggested by Figure 2. To more clearly distinguish rigid plate from subplate scale motions, additional modeling was performed. The oceanic plates were separated into three sectors corresponding to the following plates: northern Pacific plate (Yakutat to Bella Bella); Juan de Fuca plate (Bella Bella to Crescent City); and southern Pacific plate (Crescent City to La Paz).
6000 years ago, but later after most of the ice had melted it became less important than tectonic changes of land level. There is no doubt that a present eustatic rise of sea level exists, but it occurs as a bias of unknown magnitude to the tectonic effects on land levels. Presently, we cannot evaluate the eustatic rise of sea level, although we hope to be able to do so in the near future.

High-Frequency Oceanic Factors

Low-frequency relative sea level signals are dominated by tectonic processes, with an unknown contribution from absolute sea level rise. Inspection of the temporal eigenfunctions (Figure 3) and individual station data (Figures 4 and 5) reveals many superimposed high-frequency fluctuations. Although the linear trend in relative sea levels defines the space scales of tectonic, isostatic, and eustatic changes, higher-frequency changes reflect oceanographic, steric, and hydrological influence.

Sea level fluctuations along western North America at frequencies greater than 1 cpy have been studied extensively in the past [Roden, 1960, 1966; Clarke, 1977; Osmer and Huyer, 1978; Enfield and Allen, 1980; Chelton and Davis, 1982;...
Fig. 7. Plate movements from tide gauge data. (a) Linear regression results of original data at each station (same as Figure 2, top). (b) Linear regression results of residual tide gauge data at each station (original data minus rigid plate model). (c) Composite relative sea level trends from eigenanalysis of residual data of Figure 7b. (d) Peltier's [1986] isostatic adjustment due to deglaciation of the earth following the Wisconsinan glaciation. This glacioisostatic signal is poorly correlated with any of the above curves.

Allen and Denbo, 1984). Interannual variability also has been examined in detail [Kodra, 1966; Chelton et al., 1982], with particular emphasis on the El Niño/Southern Oscillation phenomenon [Wyrski, 1977, 1985; Emery and Hamilton, 1985; Chelton and Enfield, 1986]. One of the most comprehensive studies [Chelton and Davis, 1982] documented variability in relative sea level using monthly averaged tide gauge data for 20 stations from Alaska to Mexico during the interval 1946-1974. Many of their observations are germane to the present study. Their primary conclusions about higher-frequency (0-6 cpy) changes include the following:

1. The well-documented inverse barometer effect [Robinson, 1964] accounts for 50-60% of monthly sea level variability north of San Francisco but only 10-15% of the variability south of San Francisco.

2. Of the residual relative sea level variability, interannual contribution is dominated by the El Niño/Southern Oscillation, which propagates at a phase speed of approximately 40

Fig. 8. Temporal eigenfunctions as in Figure 3 except formed from residual tide gauge data following removal of rigid plate approximation.
variance in the data, respectively) document the high-frequency variability in relative sea levels. This higher-frequency variability may be caused by direct steric response to large-scale pressure anomalies [Davis, 1976; Chelton and Davis, 1982], El Niño/Southern Oscillation events, and wind stress events. Spectra of these temporal functions (Figure 9) reveal little of direct dynamical significance because of the short record length and time-varying statistics (nonstationarity) of the signal. The spectra are energetic in low frequencies, with some higher-frequency variability of unclear origin. Although this energy between 0.4 and 0.5 cpy is not aliased, it is not evident in the results of Chelton and Davis [1982].

Individual station data (Figures 4 and 10) reflect this large variability in relative sea levels. At Seattle and San Diego, two stations having the longest interval of measurement, fluctuations correlate, but significant differences exist. Spectra of three station data (Seattle, San Francisco, San Diego, Figure 9) reveal similar, but not as predominant, low-frequency energy. Again, with the poor time sample and limited stationarity these spectra provide little insight into dynamical mechanisms for relative sea level variability. The high-frequency peak (0.4-0.5 cpy) may be related to the inverse barometer effect, since spectra of relative sea level data having the barometric effect removed [Chelton and Davis, 1982] do not contain this same peak. Cross spectra between stations show some significant interannual covariance, but results are difficult to interpret because of poor stationarity.

The influence of El Niño/Southern Oscillation on these data was examined using the Southern Oscillation index of Quinn et al. [1978], as was done by Aubrey and Emery [1986b] for Australia. Chelton and Davis [1982] used the El Niño index of Allison et al. [1972] for their shorter record. For the longer data set (1920-1982), all moderate and strong El Niños are evident in monthly averaged relative sea levels from San Diego and Seattle (Figure 10), while the effects are not as clear in yearly averaged sea levels of Alaska and Canada (Figure 4). Part of this difference is due to use of a yearly averaging interval that smears the El Niño signal (this effect is absent in Figure 5), and part is due to the 10-month time lag for El Niño propagation from Mexico to Alaska. Detailed examination of stations of northern and western Alaska reveals no El Niño signature; here strong atmospheric pressure fluctuations and wind stress mask the weak El Niño.

Eigenanalysis clarifies the large-scale response of the western North American coast to El Niño (Figure 3). During the El Niños of 1925-1926 (strong), 1929-1930 (moderate), 1939-1941 (strong), 1953 (moderate), 1957-1958 (strong), 1972 (strong), and 1976 (moderate), the coherent part of the relative sea level signal as represented by the first temporal eigenfunction depicts a uniform strong deviation (in this illustration a negative deviation, because of the sign convention adopted here). Thus the El Niño exhibits a strong but not unique control on relative sea levels.

Details of the response of relative sea levels
of yearly averaged sea levels for 36 stations along the western North American coastline defines coherent patterns of relative sea levels, improving previous estimates of the coherent large-scale spatial pattern.

Low-frequency changes (frequency less than 0.05 cpy) exhibit along-coast variation, with a range of relative sea level rise or fall (with respect to land) between -8 mm/yr (subsidence) and +3 mm/yr (emergence). Although Chelton and Davis [1982] cited possible contributions to this geographic trend from cooling of the North Pacific Ocean waters [White et al., 1979] and from isostatic rebound due to deglaciation, the primary contribution is remarkably consistent with large-scale tectonics of this region. Active subduction, seafloor spreading, and fracture zone slippage impose considerable alongshore variability of land movement relative to sea level. Since the seafloor is young, competition between tectonic uplift/subsidence and thermal subsidence produces a relative sea level signature which makes identification and evaluation of a eustatic component uncertain.

Fig. 10. Relative monthly mean sea levels at Seattle and San Diego for the period 1900-1982. El Niño/Southern Oscillation indices are as in Figure 3. Both San Diego and Seattle sea levels respond in phase to this El Niño forcing, although ENSO response is but a small fraction of total sea level variance. Tide data for San Diego are not exactly as provided by Permanent Service for Mean Sea Level. A 100-mln jump in water level has been removed from data preceding 1926, providing a close correspondence for records from San Diego and nearby La Jolla.

to atmospheric and sea level forcing are not examined in greater detail here because it is beyond the major focus of this study. Chelton and Davis [1982] provided more detail on these relationships.

Clear in both eigenanalysis results (Figure 3) as well as individual station data (Figure 10) is an apparent increase in rate of relative sea level rise centered near 1935. Examination of the longest station data as well as the shorter records used for eigenanalysis reveals this behavior. Prior to 1935, relative sea level change was low, increasing after 1935. Simple two-segment linear statistical models demonstrate a significant (greater than 95% level of confidence) change in slope at this time. This change cannot be explained by available data. It may represent a steric response to the greenhouse effect, a low-frequency (period order of 100-years) mode of relative sea level variability unresolved by the short record length, poor tide gauge measurements prior to 1935, or a change in ice volume. Meier et al. [1985] lent no support for the ice volume theory, while Barnett [1983b] found no steric effect on this time scale. Interestingly, Barnett [1984a] did find a similar effect in his studies; Emery and Aubrey [1985] reported the same change in Scandia; while Brachts and Aubrey [1986] observed this acceleration in rate of change along the U.S. east coast at the same time. More investigation of this phenomenon is required to identify its causes.

Conclusions

Relative sea level records derived from tide gauges reveal a rich spectrum of motions, varying from extremely low-frequency (less than 0.05 cpy) to about one-half cycle per year. Eigenanalysis

Acknowledgments. This research was funded by NOAA National Office of Sea Grant under grant NA83-AA-D-00049, by the National Science Foundation under grant OCE-8501174, and by the Woods Hole Oceanographic Institution's Coastal Research Center. Comments by J. Heitzler, M. Stefanick, E. Uchupi, and an anonymous reviewer.
improved the manuscript. Woods Hole Oceanographic Institution contribution 6058.

References

King, P. B., Tectonic map of North America, scale 1:5,000,000, 2 sheets, U.S. Geol. Surv., Reston, Va., 1969.

Meier, M. F., D. G. Aubrey, C. R. Bentley, W. S.

(Received October 15, 1985; revised August 18, 1986; accepted August 20, 1986.)