Edgartown

Chappaquiddick Island

Katama Bay &

Inlet

Wasque Pt

Norton Point

Atlantic Ocean

Edgartown

Chappaquiddick Island

Katama Bay &

Inlet

Wasque Pt

Norton Point

Atlantic Ocean

Between 2007 and 2015 Katama Inlet migrated 1.5 km

Between 2007 and 2015 Katama Inlet migrated 1.5 km

Britt Raubenheimer & Julia Hopkins

What moves the sand?

- Waves or currents?
- Daily tidal flows or storms?
 - Hurricanes (~1 day, intense)
 - Nor'easters (few days, less intense)

Vineyard Sound

Musteger Gennel

Chappaquiddick Is.

Atlantic Ocean

Vineyard Sound

Musteger Gentle

Chappaquiddick Is.

Vineyard Sound

Musteger Game

Chappaquiddick Is.

Katama Inlet,

2 m/s

Katama Bay

Atlantic Ocean

Vineyard Sound

Musteger Game

Chappaquiddick Is.

Katama Bay

Vineyard Sound

Musteger Game

Chappaquiddick Is.

Katama Inlet

~2 m/s

Surfzone >1 m/s

Katama Bay

Separation zone ~0 m/s

Atlantic Ocean

June 2011

Katama Bay

Chappaquiddick Is.

Norton Point

Atlantic Ocean

June 2011

Katama Bay

Norton Point

March 2012

June 2011

Katama Bay

Norton Point

March 2012

Offshore wave height

What moves the sand?

- Waves or currents?

Simulate tides, waves, currents, sediment transport, beach changes. Allow "what if" scenarios

Numerical models

Be skeptical of models!

Be skeptical of models!

Test them at your location

km

- sea level (tides, surge)
- waves
- currents

 Pressure
Pressure & Profiler
Pressure & Current Meter

Test the model

Vineyard Sound

Musteger Gennel

Chappaquiddick Is.

Atlantic Ocean

Martha's Vineyard

Chappaquiddick Is.

√ Tidal currents

Musteger Gennel

Vineyard Sound

Atlantic Ocean

Chappaquiddick Is.

✓ Tidal currents

✓ Separation

Vineyard Sound

Atlantic Ocean

Chappaquiddick Is.

✓ Inlet flows

✓ Tidal currents

✓ Separation

Vineyard Sound

Bill Brine photo

Atlantic Ocean

Atlantic Ocean

Chappaquiddick Is.

✓ Inlet flows

✓ Tidal currents

✓ Separation

Vineyard Sound

✓ Wave heights& directions

Chappaquiddick Is.

✓ Tidal currents

ger Gannel

Vineyard Sound

√ Separation

 \checkmark Wave heights

& directions

\checkmark Surf waves & currents

✓ Inlet flows

Atlantic Ocean

Hurricane Irene

7 km

km 7

7 km

km

Sand is harder to simulate. Is the model accurate?

Sand is harder to simulate. Is the model accurate?

Survey the bathymetry before and after Irene & Sandy.

Sand is harder to simulate. Is the model accurate?

Survey the bathymetry before and after Irene & Sandy.

Compare simulations with observations.

Maddie Smith

Jeff Hansen

7 km

Irene Morphological Change

Observed

Bathymetric Change (m) 0 -2.5

2.5

Irene Morphological Change

2.5

Bathymetric Change (m)

0

-2.5

Observed

Simulations: Irene

Simulations: Irene

Simulations: Irene

The model has skill simulating

- Tides
- Waves
- Currents
- Morphological evolution

Use it for "what if" scenarios

The model has skill simulating

- Tides
- Waves
- Currents
- Morphological evolution

Use it for "what if" scenarios

Waves or currents?

Katama is a "mixed wave- & current-driven transport" system

• Waves can be big

Katama is a "mixed wave- & current-driven transport" system

- Waves can be big
- Tidal currents are strong

2 m/s

Katama is a "mixed wave- & current-driven transport" system

- Waves can be big
- Tidal currents are strong
- Currents decreased as inlet evolved

Tidal-current transport bigger than wave transport

2 m/s

0.5 m/s

Tidal-current transport bigger than wave transport

Wave-driven transport bigger than tidal transport

Tidal-current transport bigger than wave transport

Wave-driven transport bigger than tidal transport

2 m/s

Currents > Waves -

W/C = 0.6

W/C = 1.6

Waves > Currents

Currents > Waves

Waves > Currents

0.5 m/s

After breaching, waves deposit sediment

0.5 m/s

After breaching, waves deposit sediment

Lengthens, narrows, and shoals

0.5 m/s

After breaching, waves deposit sediment

less scour

Lengthens, narrows, and shoals

increased friction

• Tidal currents decrease

0.5 m/s

After breaching, waves deposit sediment

less scour

- Lengthens, narrows, and shoals increased friction
- Tidal currents decrease
- Waves deposit sediment

0.5 m/s

After breaching, waves deposit sediment

less scour

- Lengthens, narrows, and shoals increased friction
- Tidal currents decrease
- Waves deposit sediment
- Lengthens, narrows, and shoals

0.5 m/s

After breaching, waves deposit sediment

less scour

- Lengthens, narrows, and shoals increased friction
- Tidal currents decrease
- Waves deposit sediment
- Lengthens, narrows, and shoals

0.5 m/s

After breaching, waves deposit sediment

less scour

- Lengthens, narrows, and shoals increased friction
- Tidal currents decrease
- Waves deposit sediment
- Lengthens, narrows, and shoals

Feedback, evolution accelerates

Waves move sand

Hurricanes (high energy, short duration) Nor'easters (energetic for a few days)

Which moves more sand?

Hurricane Irene: Rapid rise to ~9 m waves Rapid decline

Hurricane Irene: Rapid rise to ~9 m waves Rapid decline

Nor'easter: Rapid rise to ~5 m waves Slow decline

Storm *Intensity* = peak energy / duration of peak

Hurricane intensity > nor'easter intensity

Simulate 1 week of evolution for equal total energy, different peaks

Simulate 1 week of evolution for equal total energy, different peaks

Simulate 1 week of evolution for equal total energy, different peaks

Martha's Vineyard

Offshore wave height

Tidal current transport

Tidal current transport

- moves sediment along inlet channel
- hinders sediment deposition (scours channel)

Tidal current transport

- moves sediment along inlet channel
- hinders sediment deposition (scours channel)

Wave-driven transport

Tidal current transport

- moves sediment along inlet channel
- hinders sediment deposition (scours channel)

Wave-driven transport

- deposits sediment into the inlet
- moves sediment eastward

Tidal current transport

- moves sediment along inlet channel
- hinders sediment deposition (scours channel)

Wave-driven transport

- deposits sediment into the inlet
- moves sediment eastward

Waves enhance inlet infilling and migration

Tidal current transport

- moves sediment along inlet channel
- hinders sediment deposition (scours channel)

Wave-driven transport

- deposits sediment into the inlet
- moves sediment eastward

Waves enhance inlet infilling and migration Hurricanes move more sand than nor'easters (but there are more nor'easters!)

Supported by Sea Grant (NOAA), NSF, DoD

Chris Kennedy Mike Creato, George 'Smitty' Smith, & airpark team Chris Seidel, Bob Gilkes Bill Brine Shell fishermen Reading Room Mr. Day and Captain Kevin Ward Charlie Blair Clair Gesualdo Levi Gorrell & the PVLAB field crew Mara Orescanin, Anna Wargula, Rachel Housego