

Funding & Partners

- Edey Foundation Grant 2014
- EPA Healthy Communities Grant 2015

- Jamie Vaudrey, University of Connecticut
- Sheri Caseau & Chris Seidel, MV Commission
- Kristen Fauteux, Sheriff's Meadow Foundation
- Liz Durkee, Oak Bluffs Conservation Commission
- Nathaniel Mulcahy, Worldstove
- Allen Healey & Caitlin Jones, Mermaid Farm

Bioextraction & bioremeditation

- Shellfish & seaweed culture
 - Create jobs
 - Invigorate working water fronts
 - Produce food
 - Require inputs of capitol investment, etc.

- Phragmites australis
 - Wild, invasive, already exists all over the place
 - The public and property owners would appreciate it being cut because it blocks their view
 - Does perform ecosystem services

Green-sponge and green-liver

- Requires 50% more N than natives
- 50% more below ground biomass, roots can be 6 feet deep
- Can satisfy up to 42% of nitrogen needs with DON, compared to 24% for Spartina
- Can break down CECs (Yujie He et al. 2017)
- Used to clean stormwater and agriculture run off
- Has competitive advantage for light

Do something **C**UT IT **TAKE IT AWAY WITH IT NO PLANTING NO "ENCOURAGING"** REMOVE NITROGEN

Many aspects to this project

N content &

- 1. Literature review of nitrogen sequestration
- 2. Bi-monthly plant sampling: June Oct 2016 & 2017
- 3. Stalk density surveys
- 4. Groundwater well monitoring
- 5. Mapping stands on Chilmark, Farm and Lagoon Ponds

- Impacts of harvest
- 6. Experimental harvest
- 7. Native plant survey
- 8. Germination rate of seeds
- 9. Production of pellets from Phragmites and cardboard
- **10.** Palatability of Phragmites to livestock
- 11. Nutritional and contaminant analysis for animal feed
- 12. Review and evaluation of the permitting process
- 13. Water quality monitoring in Chilmark Pond

Questions...

- 1. What impact does *Phragmites* have on the nitrogen content of groundwater?
- 2. When is the optimal time to harvest?
- 3. How much nitrogen is stored in *Phragmites* biomass?

photo courtesy of Jennifer Wozniak, UConn Lagoon Pond, Martha's Vineyard, MA, 2017

Groundwater Study

Lagoon Pond
3 dates in 2017, Mar, Jun Aug
- nitrogen in groundwater

Bi-weekly sampling

June – October 2016 & 2017

- 1. Size of plants
- 2. Nitrogen content
- 3. Seasonal variation

- Plants measured
- Separated leaves, stem and flower
- Wet and dry weights
- Sent to Dr. Vaudrey at UConn

Harvest should be before August 1

- Reduce spread through seeds
- July harvest yields slightly more nitrogen (21% gain) than June
- but at the cost of handling much more biomass (84% increase)

Questions...

- 1. What impact does *Phragmites* have on the nitrogen content of groundwater?
- 2. When is the optimal time to harvest?
- 3. How much nitrogen is stored in *Phragmites* biomass?

photo courtesy of Jennifer Wozniak, UConn Lagoon Pond, Martha's Vineyard, MA, 2017

N per plant * # plants per square meter = harvest of N

for reference, the load to Lagoon Pond is \sim 11,000 lb N / y

harvest estimate * %N = harvest of N

Chilmark Pond at this station had 53 shoots / m^2 , on the high end of the density range of 30-60 shoots/ m^2 with a median of 44 shoots/ m^2 .

for reference, the load to Lagoon Pond is ~11,000 lb N / y

Density shows significant differences. of all parameters, this one showed the greatest difference

Nitrogen Harvest Estimates

	N per square meter (g N / m ²)	harvest as pounds of nitrogen per acre
June 1, plant est.	6.0 (1.4 – 13.5)	53 (12 – 120)
July 1, plant est.	7.3 (2.3 – 15.4)	65 (20 – 137)
July 27, harvest est.	11.5 (6.8 – 17.2)	102 (61 – 153)

plant est. = based on the nitrogen per plant * density accounts across Island harvest est. = based on nitrogen per plant * harvest at Chilmark Pond (53 shoots $/ m^2$)

There are ~2 acres in the West Arm of Lagoon Pond

- 60 kg N (maybe as much as 200 kg)
- MEP says that nitrogen inputs to the West Arm needs be reduced by 870 kg N/year
- Harvesting 2 acres of Phragmites could meet 7% of this (or as much as 23%)
- Equal to 200,000 oysters (@0.3gN each)

Chilmark Pond has >12 acres

- Chilmark Pond needs to reduce N inputs by 840 kg N/yr
- 10 acres x 30kg/acre = 300 kg = 35%
- At the highest estimate of 100kg/acre, 8.5 acres could remove all 840 kgN/ year

Implementation challenges

- Finding the right equipment for different terrain types
- Should be managed like any other crop to avoid biomass reduction with time
- Who is going to do this?
- How will it be paid for?
 - 1. Land owners that want a view
 - 2. Municipality responsible for cleaning the pond
 - 3. Value added products (compost, animal feed, fuel pellets)

HUGE team effort

Oak Bluffs Conservation Commission

Sheriff's Meadow Foundation

MV Commission

Mermaid Farm

World Stove

Polly Hill Arboretum

Island Grown Initiative, Farm Hub

The Edey Foundation, pilot funding

Tisbury Public Works

