Shifting Sands and the Shorelines of Nantucke

Andrew Ashton

perspectives

- Change is the constant along the coast
- The coastline is interconnected, from source to sink
- Current management problems are in most cases are not (yet!) related to human-induced climate change
- Sea-level rise and climate change effects will be superimposed on ongoing coastal change
- So wherever there are management problems now, they will get much worse.

coastal sediment budget

from Titus et al, 2009

Oldale, 2001

Erosional vs.Depositional Environments

sandy bluffs

- Cliffs and Bluffs
 - Loss is permanent
- Barriers and Dunes
 - Always changing
 - Accreting or being reworked

$\langle \underline{\mathbb{A}} \rangle$

Geology of Nantucket

Oldale USGS, 1985

Processes Long Studied

The Outline of Cape Cod by W.M. Davis, 1896

alongshore sediment transport

- Also known as "littoral transport"
- sediment moved along the coast by breaking waves

alongshore sediment transport

 breaking-wave-driven alongshore sediment transport (within the surf zone) is highly dependent on deep-water wave-angle

coastline change

coastline change

coastline change

Oldale, 2001

simulated low-angle spits

simulated low-angle spits

spits

modeled spit formation

process-based spit characterization

different headland widths

Ashton et al., ESD 2016

different headland widths

Ashton et al., ESD 2016

different wave angles

different headland erosion rate

Cape Cod

$\langle \underline{\mathbb{A}} \rangle$

Geology of Nantucket

Oldale USGS, 1985

alongshore sediment transport

- Also known as "littoral transport"
- sediment moved along the coast by breaking waves

smoothing of coast?

smoothing of coast?

simulated evolution

evolution

examples

Nantucket Harbor

Sea-level Rise Projections

(Sweet et al., 2017)

shoreline flooding

Sea-level Flooding

$$\mathsf{D}x = \frac{1}{S_{beach}}\mathsf{D}z$$

 Flooding Predictions (Titus et al., 2009)

Sea-level Flooding

With Waves: the 'Bruun Rule'

$$\mathsf{D}x = \frac{1}{S_{shoreface}} \mathsf{D}z$$

balance of components

 waves send sediment shoreward
 gravity component offshore

waves (depth)

gravity (slope)

balance of components

 waves send sediment shoreward
 gravity component offshore

sea-level

<u>_</u>Z

ocean

rise: ∆Z

shoreface

Dz

slope: $S_{shoreface}$

Sea-level Flooding

With Waves: the 'Bruun Rule'

shoreline

change: ∆X

$$\mathsf{D}x = \frac{1}{S_{shoreface}}$$

$$\mathsf{D}x = \frac{1}{S_{beach}}\mathsf{D}z$$

sea-level

rise: ∆Z

shoreface

Sea-level Flooding

With Waves: the 'Bruun Rule'

shoreline

change: ∆X

slope:
$$S_{shoreface}$$

ocean
 $Dx = \frac{1}{Dz}$

 $S_{\it shore face}$

$$\mathsf{D}x = \frac{1}{S_{beach}}\mathsf{D}z$$

 $S_{beach} \sim 0.1$ $\Delta x = 10 \text{ x } \Delta z$

Sea-level Flooding

With Waves: the 'Bruun Rule'

barrier coasts

 ∇

$\langle \underline{\mathbb{A}} \rangle$

Geology of Nantucket

Oldale USGS, 1985

perspectives

- Change is the constant along the coast
- The coastline is interconnected, from source to sink
- Current management problems are in most cases are not (yet!) related to human-induced climate change
- Sea-level rise and climate change effects will be superimposed on ongoing coastal change
- So wherever there are management problems now, they will get much worse.

