

The Latest Developments in Non-structural Alternatives for Shoreline Stabilization

Based on Site Specific Criteria

If a beach has a base elevation.

Based on Site Specific Criteria

If a beach has a base elevation.

The function a **fringe** marsh plays.

Based on Site Specific Criteria

If a beach has a base elevation.

The function a **fringe** marsh plays.

Near shore characteristics like **fetch**, **water depths**, **sand bars**, and location within a given **littoral cell**.

Materials for Stabilizing Coastal Banks

 Coir fiber roll and reinforced fiber roll lifts add stability and protection to the toe of a bank and provides a window of opportunity to establish vegetation.

Materials for Stabilizing Coastal Banks

Materials for Stabilizing Coastal Banks

• Erosion control blanketing composed of natural fibers are used to stabilize soils above the fiber rolls allowing time for native salt tolerant plants become established.

Materials for Stabilizing Coastal Banks

- Resists degradation from the marine environment.
- Absorbs some of the force of wave energy unlike many hard solutions that deflect the energy of wave action to surrounding areas.
- Materials life-expectancy to stabilize sediments matches the time required to establish native plants.

Materials for Stabilizing Coastal Banks

• Establish native plants.

Materials for Stabilizing Coastal Banks

Root Depths of Native Plant Species

Typical Eroding Bank

Importance of Establishing a Stable Slope

- Utilizing a portion of the upper bank can create a more stable slope angle.
- Adds increased stability and storm damage prevention to the bank.
- Without this step, an investment in bioengeneering can be lost due to bank collapses.

(MA CZM Storm Smart Properties Fact Sheet 4)

Stabilizing toe of bank - Fiber rolls

- Installation begins at the base of the array and proceeds up bank.
- Proper anchoring strategy to hold toe protection in place.
- Synthetic filter fabrics DO NOT ENHANCE success of a bioengineering project.

Stabilizing toe of bank - Pre-vegetated fiber rolls

- Use of pre-vegetated fiber rolls along top of array.
- Added vegetation to the root matrix.
- Full season of plant growth prior to installation.

Stabilizing soils above toe protection

- Native salt tolerant grasses are seeded into the bank prior to installation of erosion control blankets.
- The erosion control blankets protect soils from erosion and helps to retain moisture to promote seed germination.

Sand cover for fiber rolls

- Sand nourishment protects coir fiber rolls from photo-degredation "Sun Block".
- Nourishment also functions as sediment source to the adjacent coastal resource areas.

Native plant species

- Native beach plum and bayberry planted through erosion control blanketing.
- Temporary above ground irrigation for plant establishment.

Native plant species

• Establishment of native vegetation after two seasons of growth.

• Condition of fiber roll array following Hurricane Sandy - 11/2012

Waves reached above fiber roll array with no damage.

Condition of fiber roll array following named storm Nemo - 2/2013

Condition of fiber roll array following named storm Nemo - 2/2013

Waves reached above fiber roll array with no damage.

• Fiber roll array increased in length by 90' - 6/2013

Sand Envelopes

Sand Envelopes

Sand Envelopes

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

Reinforced Fiber Roll Lift

The Latest Developments in Non-structural Alternatives for Shoreline Stabilization

