

Restore marsh-sustaining hydrology to a heavily ditched marsh in order to:

- reverse trends of marsh subsidence
- re-establish and retain high marsh habitat
- support obligate marsh species (saltmarsh sparrow)
- allow marsh to keep pace with SLR more effectively

Trustees Salt Marsh Restoration Projects

Phase 1 85 acres
Phase 2 273 acres
Phase 3 916 acres

Phase 1 & 2 Phase 3 \$1 Million \$1 Million

Ditch Remediation*

LOW IMPACT – NATURE-BASED SOLUTION

trustees

Graphic produced by Geoff Wilson. * Ditch remediation is based on work pioneered by Burdick, D. M. et.al., 2019 *Mitigating the Legacy Effects of Ditching in a New England Salt Marsh*. Estuaries and Coasts, SPECIAL ISSUE: HURRICANE SANDY IMPACTS AND RESPONSES

Micro Runnels

LOW IMPACT – NATURE BASED SOLUTION

untreated Waterlogged Area

Micro-Runnel Treatment Area

Zone of Saturation at or Near the Surface Zone of Saturation Controlled by Thalweg Depth and Soil Porosity

Center Line

30-45cm

20cm

Crane Runnel – no erosion after 8 months

Thanks to Our Funders

Russ Hopping
Lead Coastal Ecologist
The Trustees
rhopping@thetrustees.org

