Integrated Assessment of Shoreline Protection Options

Di Jin (WHOI)

• Worldwide, coastal communities face threats of shoreline change.
• A warming climate, rising sea levels have resulted in the permanent inundation of residences and businesses.

• Coastal communities must consider whether
 ➢ to stabilize the shoreline with gray or green methods, or
 ➢ to leave the shoreline alone, implying a more rapid retreat from the coast.
Green vs. Gray Options

Shoreline armoring can accelerate erosion and loss of beaches and tidal wetlands (Gittman et al. 2015).

Ecosystem Services

- Protection of coastlines from storm surges and waves
- Reduction of shoreline erosion
- Cycling of nutrients
- Carbon sequestration

- Water quality maintenance
- Nursery habitats
- Tourism and recreation
- Health benefits
- Symbolic of coastal heritage

https://www.delawarelivingshorelines.org/what-is-a-living-shoreline

Economic Analysis

Cost-Benefit Analysis of a coastal green infrastructure project:
\[B > C \text{ or } \frac{B}{C} > 1 \text{ ?} \]

- Effectiveness of storm resistance
- Changes in ecosystems
- Storm event probability
- Avoided damages
- Added ecosystem service values
- Benefits
- Costs

Graph showing benefits and costs for Wetlands and Oyster Reefs.
Case Studies

Benefit and Cost of Green Solution for Coastal Protection

<table>
<thead>
<tr>
<th>Location</th>
<th>Gray solution cost</th>
<th>Green solution cost</th>
<th>Difference</th>
<th>Ecosystem benefits</th>
<th>B-C ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenway</td>
<td>5.42</td>
<td>7.14</td>
<td>1.72</td>
<td>4.85</td>
<td>2.82</td>
</tr>
<tr>
<td>Constitution Beach</td>
<td>7.81</td>
<td>12.92</td>
<td>5.11</td>
<td>5.91</td>
<td>1.16</td>
</tr>
<tr>
<td>Suffolk Downs</td>
<td>7.97</td>
<td>23.74</td>
<td>15.77</td>
<td>95.02</td>
<td>6.02</td>
</tr>
</tbody>
</table>

Costs and benefits are discounted sums over 25 years at 3% discount rate in 2017 $millions.

Research in collaboration with UMass Boston and Woods Hole Group

Study Sites in East Boston

- A: Greenway
- B: Constitution Beach
- C: Suffolk Downs

Low to moderate energy environment is suitable for living shoreline.

https://coast.noaa.gov/digitalcoast/stories/casco.html
Summary: Green Infrastructure

- Green options are economically justifiable in many public projects
- Location: must consider living shoreline suitability (low to moderate energy environment)
- Hybrid system offers both ecological and economic benefits (moderately high energy environment).
- Must consider coastal population and assets (damage avoided)
- Cost-benefit results affected by the resilience of green options under sea level rise (oyster reefs grow with SLR)

- Private benefits associated with green options typically < public benefits

https://www.sacredheart.edu/academics/colleges--schools/college-of-arts--sciences/departments/biology/living-shorelines-in-connecticut/
Geoeconomic Analysis

Geological Model: Natural Physical Changes in Coastal Domain

Sea-Level Rise (exogenous)

Waves and Storms (exogenous)

Human-Induced Physical Changes to Coastal Domain

Human Behavior

Coordinated

Un-coordinated

Socio-Economic Optimization Model

Choices of managed beach widths under environmental uncertainty

Erosion

\[\gamma = f(x) \]

\[\Pi(y, s) = B(y) - C(s) \]

Value function

\[V(y) = \max_s \ E_t \int_0^\infty \Pi(y, s)e^{-\delta(\tau-t)} \, d\tau \]

Dynamics of beach width

\[dy = [s - f(x)] \, dt + \sigma y \, dz \]

\[z(t) \text{ is a Wiener process} \]

\[dz = \kappa_t \, \sqrt{dt} \]

The variance of the change in a Wiener process grows linearly with time (t)

www.nagsheadnc.gov
Choices of managed beach widths under environmental uncertainty

Risk aversion can affect a coastal property owner's choice of beach width in contradictory ways: the expected benefits of hazard protection must be balanced against the expected costs of repeated nourishment actions.
Can coastal communities continue to hold the line?

Engineered coastal berm-dune renourishment in New Jersey (Kolodin et al. 2021)

A geoeconomic model of the natural and anthropogenic processes that shape beach and dune morphology. The model results suggest:

- Coastal communities may exhibit significant differences in their capabilities to maintain engineered dunes depending on stakeholder wealth and risk perception.
- Communities with strong preferences for ocean views are less likely to maintain large-scale berm-dune structures over the long term.

Shoreline Change Response Strategies

We should view sea-level rise adaptation from the context of sustainable hazard mitigation, to reduce the long-term risk to life and property from hazards.

- In the near term (< 30 years): improve the resilience of coastal communities (gray and green coastal protection, disaster training and education).
- Over the long term: consider the overall effect of mitigation efforts on current and future generations. Managed retreat is likely to be the only course of action available in many places.

Acknowledgements

Woods Hole Sea Grant
National Science Foundation
WHOI Coastal Ocean Institute
NOAA COCA Program
Barr Foundation
Porter Hoagland, WHOI
Andrew Ashton, WHOI
Hauke Kite-Powell, WHOI
Jorge Lorenzo-Trueba, Montclair State University

Jesse Kolodin, Montclair State University
Mary Schumacher, WHOI and Falmouth Conservation Commission
Chris Watson, Univ. of Mass Boston
Paul Kirshen, Univ. of Mass Boston
Ellen Douglas, Univ. of Mass Boston
Kirk Bosma, Woods Hole Group
Greg Berman, Woods Hole Sea Grant
Lisa Engler, Massachusetts Office of Coastal Zone Management