NATIONAL ,

Experiments with thin layer sediment placement to enhance salt marsh resilience to climate change

Megan Tyrrell, Ph.D. Research Coordinator Waquoit Bay National Estuarine Research Reserve

Martha's Vineyard Coastal Conference October 1, 2024

National Estuarine Research Reserve System

http://www.mass.gov/eea/intages/dcr/passport/passportcoverpetecircle462x286.gif //

Spraying dredged sediments on marsh in full scale restoration

Examples of sediment augmentation/TLP

- RI- John H. Chafee NWR and Ninigret Pond (2016), Sachuest Point NWR (2015)
- •NY- Big Egg (2003), Elders East (2006), Elders West (2010), Yellow Bar (2012), Black Wall & Rulers Bar (2013)

Thin-layer sediment placement: EVALUATING AN ADAPTION STRATEGY TO ENHANCE COASTAL MARSH RESILIENCE

Funded by the National Estuarine Research Reserve Science Collaborative

Salt Marsh Wetlands and Water Levels program

Eight NERRs did same TLP experiment

national estuarine research reserve system

PROJECT OBJECTIVES

Determine conditions where sediment addition is an effective strategy to enhance marsh resilience

- •Consistent comparisons among 8 marshes
- •Standardized mix of quarried sediment
- •Compare effect in high vs. low marsh
- •Compare thin (+7 cm) vs. thick (+14 cm) addition layer

LOW MARSH SITE SELECTION

- •Near lower tolerance limit of marsh vegetation at each site
- •Areas with 0-50% cover, ideally with recent loss due to drowning
- •Goal of TLP here is to increase cover by low marsh vegetation

Experimental plot before

Experimental plot after

Sage Lot Pond low marsh study site

41°33'15"N

15"N 41°33'

HIGH MARSH SITE SELECTION

- •Just below elevation where high marsh species dominate
- •Areas that have converted from valued or rare high marsh communities to low marsh communities
- •Goal of TLP here is to increase proportion of high vs. low marsh plant species

Experimental plot before

Experimental plot after

Sage Lot Pond high marsh study site

Built 40 frames

Some methods.....

10% local mud mixed in with quarried sediment

MA Dept of Environmental Protection Permit 043-2942

Thin Layer Placementsediment addition for elevation boost

Before

Immediately after

Five months after

One year

Two years later

national estuarine rese

Cordgrass recovery slower w. thick sediment addition

Cordgrass recovery in low marsh

Low marsh vegetation recovery over time

Flooding sensitive high marsh plants

Suaeda = annual sea blite

https://www.pinterest.com/pin/307 089268319172591/ *Iva* = marsh elder, high tide bush

https://images.app.goo.gl/kn2druQWhKuqTgSS9

Seaside lavender

https://images.app.goo.gl/NJdN5WwM6e81UxEc8

https://dunescience.com/wpcontent/uploads/2018/06/BJ5I5400.jpg

Salt marsh hay

High marsh- all veg categories combined

High zone vegetation change by treatment

Green Filamentous Algae

Mammal utilization of sediment frames

Did we create more opportunities for fiddler crab burrow construction?

Counted burrows before and after sediment additions

Sediment addition had more crab burrows

Crab burrows, low zone

High zone lower burrow density but enhanced by sediment addition

Crab burrows, high zone

• Vegetation colonization was generally rapid

Take Home Points- 8 NERRs

- +7 cm recolonized faster than +14 cm sediment addition, but little difference after 3 years
- TLP works better to increase veg cover than to enhance flooding sensitive species
- Site matters!

NORA TO AND TO A

https://nerrssciencecollabor ative.org/resource/guidance -thin-layer-sedimentplacement

GUIDANCE FOR THIN-LAYER SEDIMENT PLACEMENT AS A STRATEGY TO ENHANCE TIDAL MARSH RESILIENCE TO SEA-LEVEL RISE RAPOSA, WASSON, NELSON, FOUNTAIN, WEST, ENDRIS, WOOLFOLK

Further considerations for sediment augmentation/ thin layer placement

- Use 1 thick rather than 2 thinner sediment applications
- Sediments compact over time, slightly overshoot desired elevation
- Monitor burrowing crab density- have a plan to mitigate if needed
- Plan to monitor for 3+ years to assess restoration efficacy
- If success = more plant cover, then project goal likely to be met. If success = more flooding sensitive species naturally recolonize, then goal less likely to be achieved

Acknowledgements

Jordan Mora

Vitalii Sheremet, Ph.D.

Adrian Bandoni, Nancy Church, Paul Evans, Haymar Lim, Kathleen Mason, Joan Muller, James Rassman

NERRS Science Collaborative
Friends of Waquoit Bay Reserve

